Page 1	Mark Scheme	Syllabus
	MATHEMATICS – JUNE 2003	9709

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 2	Mark Scheme	Syllabus
	MATHEMATICS – JUNE 2003	9709

• The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only – often written by a 'fortuitous' answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √"marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

1.	$(2x - 1/x)^5$. 4 th term needed. $\rightarrow_5 C_3 = 5.4/2$ $\rightarrow x 2^2 x (-1)^3$ $\rightarrow -40$	M1 DM1 A1 [3]	Must be 4 th term – needs (2x) ² (1/x) ³ Includes and converts ₅ C ₂ or ₅ C ₃ Co Whole series given and correct term not quoted, allow 2/3
But sir $s^2 + c^2$	$\sin 3x + 2\cos 3x = 0$ $\tan 3x = -2$ x = 38.9 (8) x = 98.9 (8) x = 158.9 (8) $\sin^2 3x + \cos^2 3x = 0$ etc. M0 $\sin^2 3x = (-2\cos 3x)^2$ plus use of $\sin 3x + \alpha$) or $\sqrt{5}\cos(3x - \alpha)$ both	M1 A1 A1√ A1√ [4]	Use of tan = sin ÷ cos with 3x Co For 60 + "his" For 120 + "his" and no others in range (ignore excess ans. outside range) Loses last A mark if excess answers in the range
3.	(a) $dy/dx = 4 - 12x^{-3}$	B2, 1 [2]	One off for each error (4, -, 12, -3)
(a) (qu	(b) $\int = 2x^2 - 6x^{-1} + c$ notient OK M1 correct formula, A1	3 x B1 [3]	One for each term – only give +c if obvious attempt at integration
4.	$a = -10$ $a + 14d = 11$ $d = \frac{3}{2}$	M1	Using a = (n – 1)d
	a + (n - 1)d = 41 $n = 35$	M1 A1	Correct method – not for a + nd Co
Either	$S_n = n/2(2a + (n-1)d)$ or $n/2(a + l)$ = 542.5	M1 A1 [5]	Either of these used correctly For his d and any n
5.	(i) 2a + b = 1 and 5a + b = 7 → a = 2 and b = -3	M1 A1 [2]	Realising how one of these is formed Co
	(ii) $f(x) = 2x - 3$ ff(x) = 2(2x - 3)-3 $\rightarrow 4x - 9$ = 0 when x = 2.25	M1 DM1 A1 [3]	Replacing "x" by "his ax + b" and "+b" For his a and b and solved = 0 Co

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

6.	(i) 3/4 T >x	B2, 1 [2]	For complete cycle, shape including curves, not lines, -3 to +3 shown or implied, for - π to π . Degrees ok
	(ii) $x = \pi/2$, $y = 3$ (allow if 90°) $\rightarrow k = 6/\pi$ co.	M1 A1 [2]	Realising maximum is $(\pi/2, 3)$ + sub Co (even if no graph)
	(iii) $(-\pi/2, -3)$ – must be radians	B1 [1]	Co (could come from incorrect graph)
7.	(i) $\begin{array}{c} L_1 & P \\ \hline P & 1 \\ \hline P &$	B1	Co – anywhere
	Gradient of $L_2 = \frac{1}{2}$	M1 M1A1√ [4]	Use of $m_1m_2 = -1$
	(ii) Sim Eqns $\rightarrow x = 3, y = 2$	M1 A1	Solution of 2 linear eqns Co
	AB = $\sqrt{(2^2 + 4^2)}$ = $\sqrt{20}$ or 4.47	M1A1 [4]	Correct use of distance formula. Co
8.	(i) $\overrightarrow{BA} = \mathbf{a} - \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$	M1	Knowing how to use position vector for \overrightarrow{BA} or \overrightarrow{BC} – not for \overrightarrow{AB} or \overrightarrow{CB}
	Dot product = $-2 + 8 - 6 = 0$	M1A1	Knowing how to use $x_1y_1 + x_2y_2 + x_3y_3$.
	→ Perpendicular	A1 [4]	Correct deduction. Beware fortuitous (uses \overrightarrow{AB} or \overrightarrow{CB} – can get 3 out of 4)
	(ii) $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ $\overrightarrow{AD} = \mathbf{d} - \mathbf{a} = -5\mathbf{i} + 10\mathbf{j} + 5\mathbf{k}$	M1	Knowing how to get one of these
	These are in the same ratio \ parallel	M1	Both correct + conclusion. Could be dot product = $60 \rightarrow \text{angle} = 0^{\circ}$
	Ratio = 2:5 (or $\sqrt{24}$: $\sqrt{150}$)	M1A1 [4]	Knowing what to do. Co. Allow 5:2

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

		l	<u> </u>
9.	B 8 0 c		
	(i) θ = 1 angle BOC = π - θ Area = $\frac{1}{2}r^2\theta$ = 68.5 or 32(π -1) (or $\frac{1}{2}$ circle-sector)	B1 M1 A1 [3]	For π - θ or for $\frac{1}{2}\pi r^2$ – sector Use of $\frac{1}{2}r^2\theta$ Co NB. 32 gets M1 only
	(ii) $8 + 8 + 8\theta = \frac{1}{2}(8 + 8 + 8(\pi - \theta))$ Solution of this eqn	M1 M1	Relevant use of s = rθ twice Needs θ – collected – needs perimeters
	\rightarrow 0.381 or $^{1}/_{3}(\pi$ -2)	A1 [3]	Co.
	(iii) $\theta = \pi/3$ AB = 8cm BC = 2 x 8sin $\pi/3$ = 8 $\sqrt{3}$	B1 M1	Co. Valid method for BC – cos rule, Pyth allow decimals here
	Perimeter = $24 + 8\sqrt{3}$	A1 [3]	Everything OK. Answer given NB. Decimal check loses this mark
10.	$y = \sqrt{(5x + 4)}$		
	(i) $dy/dx = \frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ $x = 1$, $dy/dx = \frac{5}{6}$	B1B1 B1 [3]	1/₂(5x + 4) ^{-1/₂} x 5 B1 for each part Co
	(ii) $dy/dt = dy/dx \times dx/dt$ = 5/6 x 0.03	M1	Chain rule correctly used
	→ 0.025	A1√ [2]	For (i) x 0.03
	(iii) realises that area → integration	M1	Realisation + attempt – must be $(5x + 4)^k$
	$\int = (5x + 4)^{3/2} \div {}^{3}/_{2} \div 5$	A1A1	For $(5x + 4)^{3/2} \div {}^{3}/_{2}$. For $\div 5$
	Use of limits $\rightarrow 54/15 - 16/15$ = 38/15 = 2.53	DM1 A1 [5]	Must use "0" to "1" Co

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

11.	(i) $8x - x^2 = a - x^2 - b^2 - 2bx +$ equating $\rightarrow b = -4$ $a = b^2 = 16$ (i.e. $16 - (x - 4)^2$)	M1 B1 A1 [3]	Knows what to do – some equating Anywhere – may be independent For 16- ()²
	(ii) dy/dx = $8 - 2x = 0$ when \rightarrow (4, 16) (or from –b and a)	M1 A1 [2]	Any valid complete method Needs both values
	(iii) $8x - x^2 \ge -20$ $x^2 - 8x - 20 = (x - 10)(x + 2)$ End values -2 and 10 Interval $-2 \le x \le 10$ g: $x \to 8x - x^2$ for $x \ge 4$	M1 A1 A1 [3]	Sets to 0 + correct method of solution Co – independent of < or > or = Co – including ≤ (< gets A0)
	(iv) domain of g ⁻¹ is x ≤ 16 range of g ⁻¹ is g ⁻¹ ≥4	B1√ B1 [2]	From answer to (i) or (ii). Accept <16 Not f.t since domain of g given
	(v) $y = 8x - x^2 \rightarrow x^2 - 8x + y = 0$	M1	Use of quadratic or completed square expression to make x subject
or (x -	$x = 8 \pm \sqrt{(64 - 4y)} \div 2$ $g^{-1}(x) = 4 + \sqrt{(16 - x)}$ $-4)^{2} = 16 - y \rightarrow x = 4 + \sqrt{(16 - y)}$ $\rightarrow y = 4 + \sqrt{(16 - x)}$	DM1 A1 [3]	Replaces y by x Co (inc. omission of -)

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	2

1	EITHER:	State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$, or corresponding equation Expand and solve a linear inequality, or equivalent Obtain critical value $1\frac{1}{2}$ State correct answer $x < 1\frac{1}{2}$ (allow \leq)	B1 M1 A1 A1
	OR:	State a correct linear equation for the critical value e.g. $4 - x = x + 1$ Solve the linear equation for x Obtain critical value $1\frac{1}{2}$, or equivalent State correct answer $x < 1\frac{1}{2}$	B1 M1 A1 A1
	OR:	State the critical value $1\frac{1}{2}$, or equivalent, from a graphical method or by inspection or by solving a linear inequality State correct answer $x < 1\frac{1}{2}$, В3 В1
			[4]
2 (i)) EITHER:	Expand <i>RHS</i> and obtain at least one equation for <i>a</i> Obtain $a^2 = 9$ and $2a = 6$, or equivalent State answer $a = 3$ only	M1 A1 A1
	OR:	Attempt division by $x^2 + ax + 1$ or $x^2 - ax - 1$, and obtain an equation in a Obtain $a^2 = 9$ and either $a^3 - 1$ $a + 6 = 0$ or $a^3 - 7a - 6 = 0$, or equivalent State answer $a = 3$ only	M1 A1 A1
		[Special case: the answer $a = 3$, obtained by trial and error, or by inspection, or with no working earns B2.]	[3]
(ii	i)	Substitute for <i>a</i> and attempt to find zeroes of one of the quadratic factor Obtain one correct answer	sM1 A1
		State all four solutions $\frac{1}{2}(-3 \pm \sqrt{5})$ and $\frac{1}{2}(3 \pm \sqrt{13})$, or equivalent	A1
			[3]
3 (i))	State or imply indefinite integral of e^{2x} is $\frac{1}{2}e^{2x}$, or equivalent Substitute correct limits correctly Obtain answer $R = \frac{1}{2}e^{2p} - \frac{1}{2}$, or equivalent	B1 M1 A1
			[3]
(ii)	Substitute $R=5$ and use logarithmic method to obtain an equation in $2p$ Solve for p Obtain answer $p=1.2$ (1.1989)	M1* dep*) A1
			[3]

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	2

4 (i)	Use tan $(A \pm B)$ formula to obtain an equation in tan x	M1
	State equation $\frac{\tan x + 1}{1 - \tan x} = 4 \frac{(1 - \tan x)}{1 + \tan x}$, or equivalent	A1
	$1 - \tan x$ $1 + \tan x$ Transform to a 2- or 3-term quadratic equation	M1
	Obtain given answer correctly	A1
		[4]
(ii)	Solve the quadratic and calculate one angle, or establish that	
	$t = \frac{1}{3}$, 3 (only) Obtain one answer, e.g. $x = 18.4^{\circ} \pm 0.1^{\circ}$	M1 A1
	Obtain second answer $x = 71.6^{\circ}$ and no others in the range	A1
	[Ignore answers outside the given range]	[3]
5 (i)	Make recognizable sketch over the given range of two suitable	D4 : D4
	graphs, e.g. $y = 1n x$ and $y = 2 - x^2$ State or imply link between intersections and roots and justify	B1+B1
	given answer	B1
		[3]
(ii)	Consider sign of $\ln x - (2 - x^2)$ at $x = 1$ and $x = 1.4$, or equivalent	M1
	Complete the argument correctly with appropriate calculation	A1
		[2]
(iii)	Use the given iterative formula correctly with $1 \le x_n \le 1.4$	M1
	Obtain final answer 1.31 Show sufficient iterations to justify its accuracy to 2d.p.,	A1
	or show there is a sign change in the interval (1.305, 1.315)	A1
		[3]
6 (i)	Attempt to apply the chain or quotient rule	M1
	Obtain derivative of the form $\frac{k \sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
	Obtain correct derivative $-\frac{\sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
	Explain why derivative, and hence gradient of the curve, is	
	always negative	A1
		[4]
(ii)	State or imply correct ordinates: 1, 0.7071, 0.5	B1
	Use correct formula, or equivalent, with $h=1/8\pi$ and three ordinates Obtain answer 0.57 (0.57220) \pm 0.01 (accept 0.18 π)	M1 A1
		[3]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	2

(iii) Justify the statement that the rule gives an over-estimate B1

[1]

7 (i) State
$$\frac{dx}{d\theta} = 2 - 2\cos 2\theta$$
 or $\frac{dy}{d\theta} = 2\sin 2\theta$ B1

Use
$$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$$
 M1

Obtain answer
$$\frac{dy}{dx} = \frac{2\sin 2\theta}{2 - 2\cos 2\theta}$$
 or equivalent A1

Make relevant use of sin 2A and cos 2A formulae (indep.) M1
Obtain given answer correctly A1

[5]

(ii) Substitute
$$\theta = \frac{1}{4\pi}$$
 in $\frac{dy}{dx}$ and both parametric equations M1

Obtain
$$\frac{dy}{dx} = 1$$
, $x = \frac{1}{2}\pi - 1$, $y = 2$

Obtain equation y = x + 1.43, or any exact equivalent A1 $\sqrt{ }$

[3]

(iii) State or imply that tangent is horizontal when
$$\theta = \frac{1}{2}\pi$$
 or $\frac{3}{2}\pi$ B1 Obtain a correct pair of x , y or x - or y -coordinates B1 State correct answers $(\pi, 3)$ and $(3\pi, 3)$ B1

[3]

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

1 (i) Use trig formulae to express LHS in terms of sin x and cos x M1 Use $\cos 60^{\circ} = \sin 30^{\circ}$ to reduce equation to given form $\cos x = k$ M1

[2]

State or imply that $k = -\frac{1}{\sqrt{3}}$ (accept -0.577 or -0.58) (ii) Α1

> Obtain answer $x = 125.3^{\circ}$ only Α1

[Answer must be in degrees; ignore answers outside the given range.]

[SR: if $k = \frac{1}{\sqrt{2}}$ is followed by $x = 54.7^{\circ}$, give A0A1 $\sqrt{.}$]

[2]

State first step of the form $kxe^{2x} \pm \int ke^{2x} dx$ 2 M1 Complete the first step correctly Α1 Substitute limits correctly having attempted the further integration of ke^{2x} M1 Obtain answer $\frac{1}{4}$ (e² + 1) or exact equivalent of the form $ae^2 + b$, having used e⁰ =1 throughout Α1

[4]

State or imply non-modular inequality $(x-2)^2 < (3-2x)^2$, or 3 EITHER corresponding equation **B**1 Expand and make a reasonable solution attempt at a 2- or 3-term quadratic, or equivalent M1 Obtain critical value x = 1Α1 State answer x < 1 only

Α1

OR State the relevant linear equation for a critical value, i.e. 2 - x = 3 - 2x, or equivalent В1 Obtain critical value x = 1В1 State answer x < 1

В1

State or imply by omission that no other answer exists

B1

OR Obtain the critical value x = 1 from a graphical method, or by inspection, or by solving a linear inequality B2 State answer x < 1В1 В1 State or imply by omission that no other answer exists

[4]

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

4 (i) EITHER State or imply that
$$x - 2$$
 is a factor of $f(x)$ Substitute 2 for x and equate to zero $\frac{1}{2}$ M1 $\frac{1}{2}$ Substitute 2 for x and equate to zero $\frac{1}{2}$ M1 $\frac{1}{2}$ [The statement $(x-2)^2 = x^2 - 4x + 4$ earns B1.]

OR Commence division by $x^2 - 4x + 4$ and obtain partial quotient $x^2 + 2x$ B1 Complete the division and equate the remainder to zero $\frac{1}{2}$ M1 $\frac{1}{2}$ M1 Obtain answer $a = 8$ A1

OR Commence inspection and obtain unknown factor $x^2 + 2x + c$ B1 Obtain $4c = a$ and an equation in c M1 $\frac{1}{2}$ M2 $\frac{1}{2}$ M2 $\frac{1}{2}$ M3 $\frac{1}{2}$ M3 $\frac{1}{2}$ M3 $\frac{1}{2}$ M3 $\frac{1}{2}$ M4 $\frac{1}{2}$ M5 $\frac{1}{2}$ M6 $\frac{1}{2}$ M1 $\frac{1}{2}$

(iii) Prove that AB = UA (or UB), or prove that angle AUB = angle ABU (or angle BAU) or prove, for example, that AO = OB and angle $AOB = 120^{\circ}$, or prove that one angle of triangle UAB equals 60° B1 Complete a proof that triangle UAB is equilateral

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

6 (i) EITHER State or imply
$$f(x) \equiv \frac{A}{2x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

State or obtain $A = 1$
State or obtain $C = 8$
Use any relevant method to find B
Obtain value $B = 4$

OR State or imply $f(x) \equiv \frac{A}{2x+1} + \frac{Dx+E}{(x-2)^2}$
B1
State or obtain $A = 1$
Use any relevant method to find D or E
Obtain value $D = 4$
Obtain value $E = 0$

A1

(ii) EITHER Use correct method to obtain the first two terms of the expansion of $(1 + 2x)^{-1}$ or $(x - 2)^{-1}$ or $(x - 2)^{-2}$ or $(1 - \frac{1}{2}x)^{-1}$ or $(1 - \frac{1}{2}x)^{-2}$ M1 Obtain any correct sum of unsimplified expansions up to the terms in x^2 (deduct A1 for each incorrect expansion)

Obtain the given answer correctly

A1

[Unexpanded binomial coefficients involving -1 or -2, e.g. $\begin{pmatrix} -2\\1 \end{pmatrix}$ are not sufficient for the M1.]

[f.t. is on A, B, C, D, E.]

[Apply this scheme to attempts to expand $(9x^2 + 4)(1+2x)^{-1}(x - 2)^{-2}$, giving M1A2 for a correct product of expansions and A1 for multiplying out and reaching the given answer correctly.]

[Allow attempts to multiply out $(1 + 2x)(x - 2)^2 (1 - x + 5x^2)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^2 , M1 for attempting to multiply out as far as terms in x^2 , A1 for a correct expansion, and A1 for obtaining $9x^2 + 4$ correctly.]

[SR: B or C omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain A, B, or C, but no further marks. In part (ii) only the M1 and A1 $\sqrt{}$ for an unsimplified sum are available.]

[SR: E omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain A or D, but no further marks. In part (ii) award M1A2 $\sqrt{A1}$ as in the scheme.]

OR Differentiate and evaluate
$$f(0)$$
 and $f'(0)$ M1
Obtain $f(0) = 1$ and $f'(0) = -1$ A1
Differentiate and obtain $f''(0) = 10$ A1
Form the Maclaurin expansion and obtain the given answer correctly A1

[4]

[5]

	age 4		Paper
		A AND AS LEVEL – JUNE 2003 9709/8719	3
		7	
7 ((i)	State or imply that $\frac{dx}{dt} = k (100 - x)$	B1
		Justify $k = 0.02$	B1
			[2]
((ii)	Separate variables and attempt to integrate $\frac{1}{100-x}$	M1
		Obtain term – In (100 - x), or equivalent	A1
		Obtain term 0.02t, or equivalent	A1
		Use $x = 5$, $t = 0$ to evaluate a constant, or as limits	M1 5 A1
		Obtain correct answer in any form, e.g. $-\ln(100 - x) = 0.02t - \ln 98$ Rearrange to give x in terms of t in any correct form,) AI
		e.g. $x = 100 - 95 \exp(-0.02t)$	A1
			[6]
		[SR: In $(100 - x)$ for -In $(100 - x)$. If no other error and $x = 100 - 9$.	5exp(0.02 <i>t</i>)
		equivalent obtained, give M1A0A1M1A0A1√]	
((iii)	State that x tends to 100 as t becomes very large	B1
			[1]
. ((i)	State derivative 1 - 2 , or equivalent	B1
•		State derivative $\frac{1}{x} - \frac{2}{x^2}$, or equivalent	
		Equate 2-term derivative to zero and attempt to solve for <i>x</i>	M1
		Obtain coordinates of stationary point (2, ln 2 +1), or equivalent	A1+A
		Determine by any method that it is a minimum point, with no incorrect work seen	A1
		With no mooned work seen	Al
			[5]
,	/::X	State on imply the equation 2	Β4
((ii)	State or imply the equation $\alpha = \frac{2}{3 - \ln \alpha}$	B1
			D1
		Rearrange this as 3 = In α + $\frac{2}{\alpha}$ (or <i>vice versa</i>)	B1
			[2]
((iii)	Use the iterative formula correctly at least once	M1
,	,	Obtain final answer 0.56	A1
		Show sufficient iterations to justify its accuracy to 2 d.p., or show	
		there is a sign change in the interval (0.555, 0.565)	A1
			[3]
(i))	State or imply a correct normal vector to either plane,	5.4
		e.g. i + 2 j - 2 k or 2 i - 3 j + 6 k Carry out correct process for evaluating the scalar product of both	B1
		the normal vectors	M1
		Using the correct process for the moduli, divide the scalar product	
		of the two normals by the product of their moduli and evaluate the	
		inverse cosine of the result	M1
		Obtain answer 40.4° (or 40.3°) or 0.705 (or 0.704) radians	A1
		[Allow the obtuse answer 139.6° or 2.44 radians]	

Page 5	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

(ii) EITHER		a complete strategy for finding a point on <i>l</i> uch a point e.g. (0, 3, 2)	M1 A1
	EITHER	Set up two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ of l , e.g. $a + 2b - 2c = 0$ and $2a - 3b + 6c = 0$ Solve for one ratio, e.g. $a:b$ Obtain $a:b:c = 6: -10: -7$, or equivalent	B1 M1 A1
	OR	State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda$ (6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$) Obtain a second point on l , e.g. (6, -7, -5) Subtract position vectors to obtain a direction vector for l Obtain 6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda$ (6 $\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$)	A1√ A1 M1 A1 A1√
	OR	Attempt to find the vector product of the two normal vectors Obtain two correct components Obtain $6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda (6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k})$	M1 A1 A1 A1√
OR	Obtain a Express t a three te	one variable in terms of a second correct simplified expression, e.g. $x = (9 - 3y)/5$ the same variable in terms of the third and form erm equation at a correct simplified expression, e.g. $x = (12 - 6z)/7$	M1 A1 M1
		uation ector equation for the line orrect answer, e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -5/3 \\ -7/6 \end{pmatrix} \lambda$, or equivalent	A1 M1
OR			M1
OK .	Obtain a Express to Obtain a Form a ve	correct simplified expression, e.g. $y = (9 - 5x)/3$ the third variable in terms of the second correct simplified expression, e.g. $z = (12 - 7x)/6$ ector equation for the line	A1 M1 A1 M1
	State a co	orrect answer, e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -5/3 \\ -7/6 \end{pmatrix}$, or equivalent	A1 √
			[6]
10 (i) EITHER	Make re	elevant use of the correct sin 2A formula elevant use of the correct cos 2A formula the given result correctly	M1 M1 A1
OR	Make re	elevant use of the tan 2A formula elevant use of 1 + $\tan^2 A = \sec^2 A$ or $\cos^2 A + \sin^2 A = 1$ the given result correctly	M1 M1 A1
			=

Page 6	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3
(ii)	State or imply indefinite integral is In sin <i>x</i> , or equivolent Substitute correct limits correctly Obtain given exact answer correctly	valent	B1 M1 A1
			[
(iii) EITHE	ER State indefinite integral of cos 2x is of the form k lr State correct integral ½ In sin 2x Substitute limits correctly throughout Obtain answer ¼ 1n 3, or equivalent	ı sin 2x	M1 A1 M1 A1
OR	State or obtain indefinite integral of cosec $2x$ is of or equivalent State correct integral $\frac{1}{2}$ In tan x , or equivalent Substitute limits correctly Obtain answer $\frac{1}{4}$ In 3, or equivalent	the form <i>k</i> In	tan <i>x</i> , M1 A1 M1 A1
			[

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS
Paper 4 (Mechanics 1)

	Page 1	Mark Scheme	Syllabus	Paper
ĺ		A AND AS LEVEL – JUNE 2003	9709	4

Mechanics 1

1	(i)	Tension is 8000 N or 800 <i>g</i>	B1	1
		Accept 7840 N (from 9.8) or 7850 (from 9.81)		
	(ii)	For using $P = \frac{\Delta W}{\Delta t}$ or $P = Tv$	M1	
		$\Delta W = 8000 \times 20 \text{ or } v = \frac{20}{50}$	A1 ft	
		Power applied is 3200 W Accept 3140 W (from 9.8 or 9.81)	A1	3
		SR (for candidates who omit g) (Max 2 out of 3) P = $800 \times 20 \div 50$ B1 Power applied is 320 W B1		
2	(i) (a)	For resolving in the direction PQ	M1	
		Component is 2 x $10\cos 30^{\circ} - 6\cos 60^{\circ}$ or 14.3 N or $10\sqrt{3} - 3$ N	A1	2
	(b)	Component is $\pm6{\rm cos}30^{\rm o}-6{\rm cos}60^{\rm o}$ or ±5.20 N or $\pm3\sqrt{3}$ N	B1	1
		SR (for candidates who resolve parallel to and perpendicular to the force of magnitude 6 N) (Max 2 out of 3) For resolving in both directions For $X = 6 - 10\cos 30^\circ$ or -2.66 N and $Y = 10 + 10\sin 30^\circ$ or 15 N A1 SR (for candidates who give a combined answer for (a) and (b)) (Max 2 out of 3) For resolving in both directions M1 For $(6\cos 30^\circ)$ i + $(2 \times 10\cos 30^\circ - 6\cos 60^\circ)$ j or any vector equivalent A1		
	(ii)	For using Magnitude = $\sqrt{ans(i)^2 + ans(ii)^2}$ Magnitude is 15.2 N ft only following sin/cos mix and for answer 5.66 N	M1 A1 ft	2
3	(i)	Region under $v = 2t$ from $t = 0$ to $t = T$ indicated	B1	1
	(ii)	For attempting to set up and solve an equation using area $\Delta = 16$ or for using $s = \frac{1}{2} 2t^2$	M1	
		For $16 = \frac{1}{2} 2T^2$	A1	
		T=4	A1	3
		SR (for candidates who find the height of the Δ but do not score M1) (Max 1 out of 3) For $h/T = 2$ or $h = 2T$ or $v = 8$ B1		

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

	(iii)	For using distance = $10 \times \text{ans}$ (ii) or for using the idea that the distance is represented by the area of the relevant parallelogram or by the area of the trapezium (with parallel sides 9 and 4 and height 10) minus the area of the triangle (with base 5 and height 10)	M1	
		A1 ft	2	
4	(i)	For differentiating x	M1	
		$\dot{x} = t + \frac{1}{10}t^2$	A1	
		Speed is 20 ms ⁻¹	A1	3
	(ii)	$\ddot{x} = 1 + \frac{1}{5}t$	B1 ft	
		For attempting to solve $\ddot{x}(t) = 2\ddot{x}(0)$ $(1 + \frac{1}{5}t = 2)$	M1	
		t = 5	A1	3
5	(i)	For resolving forces on any two of A , or B , or A and B combined ($T_1 = W_A + T_2, T_2 = W_B, T_1 = W_A + W_B$)	M1	
		Tension in S_1 is 4 N or Tension in S_2 is 2 N Accept 0.4 g or 3.92 (from 9.8 or 9.81) for T_1	B1	
		Tension in S_2 is 2 N or Tension in S_1 is 4 N Accept 0.2 g or 1.96 (from 9.8 or 9.81) for T_2	A1	3
		SR (for candidates who omit g) (Max 1 out of 3) $T_1 = 0.4$ and $T_2 = 0.2$		
	(ii)	For applying Newton's second law to A, or to B, or to A and B combined	M1	
		For any one of the equations $T + 2 - 0.4 = 0.2a$, $2 - T - 0.2 = 0.2a$, $4 - 0.4 - 0.2 = 0.4a$	A1	
		For a second of the above equations	A1	
		For solving the simultaneous equations for a and T	M1	
		Acceleration is 8.5 ms $^{-2}$, tension is 0.1 N Accept 8.3 from 9.8 or 8.31 from 9.81 SR (for candidates who obtain only the 'combined' equation) (Max 3 out of 5) For applying Newton's second law to A and B combined M1 For $4-0.4-0.2=0.4a$ A1 Acceleration is 8.5 ms $^{-2}$	A1	5

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

6	(i)	For using $F = \mu R$ and $R = mg$ $(F = 0.025 \times 0.15 \times 10)$	M1	
		Frictional force is 0.0375 N or 3/80 N Accept 0.0368 from 9.8 or 9.81	A1	2
	(ii)	M1		
		Deceleration is 0.25 ms ⁻² (or $a = -0.25$) A.G.	A1	2
	(iii)	For using $s = ut + \frac{1}{2}at^2$ $(s = 5.5 \times 4 + \frac{1}{2}(-0.25)16)$	M1	
		Distance AB is 20m	A1	2
	(iv)	For using $v^2 = u^2 + 2as$ $(v^2 = 3.5^2 - 2 \times 0.25 \times 20)$	M1	
		Speed is 1.5 ms ⁻¹ (ft $\sqrt{(24.5 - (iii))/2}$)	A1 ft	2
	(v)	Return dist. = $\frac{3.5^2}{2 \times 0.25}$ or distance beyond $A = \frac{(iv)^2}{2 \times 0.25}$	M1	
		Total distance is 44.5 m (ft 24.5 + (iii) or 2((iv)² + (iii))	A1 ft	2
7	(i)	PE gain = $mg(2.5\sin 60^\circ)$	B1	
		For using KE = $\frac{1}{2} mv^2$	M1	
		For using the principle of conservation of energy $(\frac{1}{2}m8^2 - \frac{1}{2}mv^2 = mg(2.5\sin 60^\circ))$	M1	
		Alternative for the above 3 marks:		
		For using Newton's Second Law or stating $a = -g \sin 60^{\circ}$	M1*	
		a = -8.66 (may be implied)	A1	
		For using $v^2 = u^2 + 2as$ $(v^2 = 64 - 2 \times 8.66 \times 2.5)$	M1dep*	
		Speed is 4.55 ms ⁻¹ Accept 4.64 from 9.8 or 9.81	A1	4
	(ii)	For using $\frac{1}{2} mu^2$ (>) $mg h_{max}$	M1	
		For obtaining 3.2m A.G.	A1	2
	(iii)	B1	1	

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

(iv)	WD against friction is 1.4×5.2	B1	
	For WD = KE loss (or equivalent) used	M1	
	$1.4 \times 5.2 = \frac{1}{2}0.4(8^2 - v^2) \text{ or}$ $1.4 \times 5.2 = \frac{1}{2}0.4((i)^2 - v^2) + 0.4 \times 10(2.5 \sin 60^\circ)$ (12.8 or 4.14 + 8.66)	A1	
	Alternative for the above 3 marks: For using Newton's Second Law $0.4g(2.5\sin 60^{\circ} \div 5.2) - 1.4 = 0.4a$ ($a = 0.6636$) For using $v^2 = u^2 + 2as$ with $u \neq 0$ ($v^2 = 4.55^2 + 2 \times 0.6636 \times 5.2$)	M1* A1 M1dep*	
	Speed is 5.25 ms ⁻¹	A1	4

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

Mechanics 2

1 The distance from the centre to the rod is $\sqrt{25^2 - 24^2}$ B1

For taking moments about the centre of the ring or about the mid-point of the rod, or C.O.M. of frame (correct number of terms required in equation)

M1

$$(1.5 + 0.6)\overline{x} = 0.6 \times 7 \text{ or } (1.5 + 0.6)(7 - \overline{x}) = 1.5 \times 7$$

 $1.5\overline{x} = 0.6 (7 - \overline{x})$

A1

Distance is 2cm

Α1

SR Allow M1 for 48.7 = $(50 \pi + 48) \bar{x}$

4

2 (i) $OQ = 4 \tan 20^{\circ} (=1.456)$

B1

OG = 1.5

B1

G not between O and Q (all calculations correct)

B1

3

2

(ii) Hemisphere does not fall on to its plane face

*B1 ft

Because the moment about *P* is clockwise or the centre of mass is to right of *PQ*

(dep)* B1 ft

3 (i) Rope is at 30° to wall, or beam is at 0° to the horizontal or a correct trig. ratio used

В1

For taking moments about A or

For taking moments about $\ensuremath{\textit{P}}$ and resolving horizontally

M1

 $2.5T = 45g \times 3\cos 30^{\circ}$ or

 $5H = 45g \times 3\cos 30^{\circ} \text{ and } H = T\sin 30^{\circ}$

A1ft

Α1

Tension is 468 N

4

(ii) Horizontal component is 234 N (ft ½ T)

B1 ft

For resolving forces vertically ($V = 45g - T\cos 30^{\circ}$)

M1

Magnitude of vertical component is 45 N

A1 ft

SR angle incorrect (i) B0, M1, A1 ft A0, (ii) B1 ft (*T* and angle), M1, A0

3

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

4 (i) For using Newton's second law with
$$a = v \frac{dv}{dx}$$

$$-\frac{1}{3v} = 0.2v \frac{dv}{dx}$$
 A1

$$3v^2 \frac{dv}{dx}$$
 = -5 from correct working

3

4

3

4

$$v^3 = (A) - 5x$$
 A1

For using
$$x = 0$$
 and $v = 4$ to find A , and then substituting $x = 7.4$ (or equivalent using limits)

$$v = 3$$
 A1

$$T\cos 60^{\circ} + 0.5 \times 10 = 8$$

For using Newton's second law horizontally with
$$a = \frac{v^2}{r}$$
 M1

$$6 \sin 60^{\circ} = 0.5 \frac{v^2}{(9 \sin 60^{\circ})}$$
 A1 ft

Alternative for the above 2 marks:

For using Newton's second law perpendicular to the string with a = $\frac{v^2}{r}$ M1

$$(8 - 0.5 \times 10)\sin 60^\circ = 0.5 \frac{v^2}{(9\sin 60^\circ)}\cos 60^\circ$$
 A1 ft

NB Use of $mr\omega^2$, the M1 is withheld until $v = r\omega$ is used

SR Lift perpendicular to the string:

(i)
$$8\sin 60^{\circ} = 0.5g + T\cos 60^{\circ} \rightarrow T = 3.86$$
: M1, A1, A1 (-1 MR) (2 out of 3 max);

(ii)
$$3.86\sin 60^{\circ} + 8\cos 60^{\circ} = \frac{0.5v^2}{9\sin 60^{\circ}}$$
: B1, M1, A1 $\sqrt{}$, A1 (-1 MR) (3 out of 4 max) \Rightarrow 10.7

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

6 (i) For using
$$y = \dot{y}_0 t - \frac{1}{2} g t^2$$
 with $y = 0$ and $t = 10$ or

$$\dot{y} = \dot{y}_0 - gt$$
 with $\dot{y} = 0$ and $t = 5$

M1

$$0 = 60\sin\alpha \times 10 - \frac{1}{2} \times 10 \times 10^2 \text{ or } 0 = 60\sin\alpha - 10 \times 5$$

Α1

$$\alpha$$
 = 56.4°

Α1

3

(ii) For substituting t = 5 into $y = \dot{y}_0 t - \frac{1}{2} g t^2$ or $\dot{y} = 0$ into

$$\dot{y}^2 = \dot{y}_0^2 - 2gy$$
 or $\dot{y} = 0$ and $t = 5$ into $y = \frac{\dot{y}_0 + \dot{y}}{2}t$

A1

M1

Greatest height is 125m

2

(iii)
$$\dot{y} = 60\sin\alpha - gT$$

В1

$$\dot{x} = 60\cos\alpha$$

В1

For attempting to solve $\dot{x} = \dot{y}$, or a complete method for an equation in T using $\dot{x} = \dot{y}$

M1

$$T = 1.68$$

Α1

4

NB. Use of \dot{y}_0 = 60 in (i) and (ii) is M0

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

7 (i) For using
$$T = \frac{\lambda x}{L}$$
 $(\frac{130 \times 3}{10} \text{ or } \frac{130 \times 1.5}{5})$ M1

(ii) For resolving forces vertically (
$$mg = 2 \times 39 \times \frac{5}{13}$$
) M1

For using EPE =
$$\frac{\lambda x^2}{2L}$$

(*L* must be 10 or 5; must be attempt at extension, e.g. x = 20 or x = 8 - 2.5 is M0)

[EPE =
$$\frac{130 \times 10^2}{2 \times 10}$$
 or EPE = 2 x $\frac{130 \times 5^2}{2 \times 5}$]
(Allow M1 only for $x = 2$ or 3)

$$650 = \frac{1}{3}v^2 + 3 \times 10 \times 8 + \frac{130 \times 2^2}{2 \times 10}$$
 A1 ft

2

2

M1

3

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS
Paper 6 (Probability and Statistics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

1	(i)	False zero		B1	1	Or any sensible answer
	(ii)	(a) Stem 3 4 5 6 7 8 9	Leaf 45 145 02 2 339 344556679	B1 B1		For correct stem, i.e. not 30, 40, 50 etc. For correct leaf, must be sorted
		Key 3 4 rep width = 10	o 34, or stem	B1	3	For key, NB 30 4 rep 34 gets B1 here
		(b) 79		B1 ft	1	For correct answer, only ft from a sorted stem and leaf diagram
2	(i)	P(N , \overline{N}) =	$\frac{3}{10} \times \frac{7}{9}$	M1		For multiplying 2 relevant possibilities
		Mult. By 2 =		A1	2	For obtaining given answer legitimately
		OR Total ways ₁₀ C ₂ (= 45) Total 1 of each		M1		For both totals
			$C_1 \times {}_3C_1 (= 21)$ 21/45 = 7/15 AG	A1	2	For obtaining correct answer
	(ii)	P (N, N) – 3	3/10 x 2/9 (= 1/15)	M1		For 2 correct numbers multiplied together, can be implied
		$P(\overline{N}, \overline{N}) =$	= 7/10 x 6/9 (= 7/15)	M1		For 2 correct numbers multiplied together or subtracting from 1
		<i>x</i> P (<i>X</i> = <i>x</i>) 7	0 1 2 7/15 7/15 7/15	B1	3	All correct. Table correct and no working gets 3/3
	(iii)	$E(X) = 1 \times 7$	7/15 + 2 x 1/15 = 3/5	B1 ft	1	For correct answer or equivalent. Only ft if $\sum p = 1$
3	(i)	P(X > 120)	(120_112)			
		= 1 -	$\Phi\left(\frac{120-112}{17.2}\right)$	M1		For standardising with or without the $\sqrt{17.2^2}$, but no cc.
		= 1 -	Φ (0.4651)	M1		For finding the correct area, 1 – their Φ (z), NOT Φ (1 – their z(0.4651))
		= 1 -	0.6790 = 0.321	A1	3	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

	(ii)	z = -0.842	B1	For z, ±0.842 or ±0.84
	()	$-0.842 = \frac{103 - 115}{\sigma}$	M1	For solving an equation involving their z or $z=0.7881$ or 0.5793 only, 103, 115 and σ or $\sqrt{\sigma}$ or σ^2 , i.e. must have used tables
		σ = 14.3	A1 :	For correct answer
4	(i)	$(0.7)^{24} \times (0.3)^6 \times {}_{30}C_{24}$	M1	For relevant binomial calculation
		= 0.0829	A1 2	2 For correct answer
		OR normal approx. P(24) = Φ ((24.5 - 21)/ $\sqrt{6.3}$)) - Φ ((23.5 - 21)/ $\sqrt{6.3}$)) = 0.9183 - 0.8404 = 0.0779	M1 A1 2	For subtracting the 2 phi values as written For correct answer
	(ii)	μ = 30 x 0.7 = 21, σ ² = 30 x 0.7 x 0.3 = 6.3	B1	For 21 and 6.3 seen
		$P(<20) = \Phi\left(\frac{19.5 - 21}{\sqrt{6.3}}\right) = \Phi(-0.5976)$	M1 M1 M1	For standardising process, must have √, can be + or – For continuity correction 19.5 or 20.5 For using 1 - some area found from tables
		= 1 - 0.7251 = 0.275	A1 .	5 For correct answer
5	(i)	$_{6}C_{3} \times {_{4}C_{2}} = 120$	M1	For multiplying 2 combinations together, not adding, no perms, $_{10}C_3 \times {}_{10}C_2$ or $_5C_3 \times {}_5C_2$ would get M1
			A1 2	For answer 120
	(ii)	$_{6}C_{4} \times {}_{4}C_{1} (= 60)$	M1	For reasonable attempt on option 4M 1W, or 5M, 0W, can have + here and perms
		$_{6}C_{5} \times {}_{4}C_{0} (= 6)$	M1	For other option attempt
		Answer = 186	A1 :	3 For correct answer
	(iii)	Man and woman both on ${}_{5}C_{2} \times {}_{3}C_{1}$ (= 30)	M1	For finding number of ways of the man and woman being on together, need not be evaluated but must be multiplied
		120 - 30 = 90	M1	For subtracting a relevant number from their (i)
			A1 :	3 For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

		25		
		OR ${}_{5}C_{2} \times {}_{3}C_{2} (= 30)$	M1	Any 2 of man in, woman out
		$_{3}C_{1} \times _{5}C_{3} (= 30)$	M1	Woman in, man out
		$_{5}C_{3} \times {}_{3}C_{2} (= 30)$		Neither in
		∑ = 90	A1 3	
		OR $_3C_1 \times _5C_3 (= 30)$	M1	Woman in, man out
		$_{3}C_{2} \times _{6}C_{3} (= 60)$	M1	Woman out, any man
		$\sum = 90$	A1 3	For correct answer
		∠ = 90	71.	T of correct driewer
		OR ${}_{5}C_{2} \times {}_{3}C_{2} (= 30)$	M1	Man in, woman out
		$_{5}C_{3} \times _{4}C_{2} (= 60)$	M1	Man out, any woman
		$\Sigma = 90$	A1 3	For correct answer
		_		
6	(i)	P(G) = number of	M1	For appreciating total g'parents/total
	` ,	g'parents/total people		people, can be implied
		= 6/16 = 3/8	A1 2	For correct answer
	(ii)	P(H1, G)+P(H2, G)+P(H3, G)	B1	For any correct 2-factor product, need
	-			not be evaluated
		1 2 1 3 1 1 17		
		$=\frac{1}{3}\times\frac{2}{7}+\frac{1}{3}\times\frac{3}{7}+\frac{1}{3}\times\frac{1}{2}=\frac{17}{42}$		
		(= 0.405)	M1	For addition of 3 relevant 2-factor
		(- 0.403)	IVI I	products
			A1 3	For correct answer or equivalent
			3	To some anewer of equivalent
	(iii)	P(H1 G) + P(H2 G)	M1	For summing exactly 2 probability
				options
		$=\frac{2/21}{17/42} + \frac{3/21}{17/42} = \frac{10}{17}$	MA	For dividing by anguents (!!) and if
		$=\frac{17/42}{17/42}+\frac{17/42}{17}=\frac{17}{17}$	M1	For dividing by answer to (ii), only if
		1// 12 1// 12 1/		not multiplied as well, and p must be
			A 4	< 1
			A1	For one correct probability
			A1 4	For correct answer or equivalent
		OR P(H3 $ G) = 7/17$	M1	For finding prob. options no parents
		Answer = 1 - 7/17	M1	For subt. from 1
		= 10/17	A2	For correct answer
7	(i)		M1	For using their mid-intervals (not end
	- 1			points or class widths)
		Mean =		'
		(2.5 x 11 + 7.5 x 20 +	M1	For using $\frac{\sum fx^2}{\sum f}$ any x
		15 x 32 + 25 x 18 + 35 x 10 +		4 J
		55 x 6)/97 = 18.4	A1	For correct answer, cwo, 18.4 no wkg
		,		3/3

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/0390	6

	sd = $\sqrt{(2.5^2 \times 11 + 7.5^2 \times 20 + 15^2 \times 32 + 25^2 \times 18 + 35^2 \times 10 + 55^2 \times 6)/97 - mean^2)}$ = 13.3	M1 A1 5	For using $\frac{\sum fx^2}{\sum f}$ - (their mean)² or equivalent, no $\sqrt{}$ needed, not $(\sum fx)^2/\sum f$ For correct answer
(ii)	Freq. densities: 2.2, 4.0, 3.2, 1.8, 1.0, 0.2	M1	For attempting a frequency density of some sort (or scaled frequency), can be upside down but not multiplied
	freq.—	A1	For correct heights on the graph
	dens	B1	For correct bars on uniform horiz. scale, i.e. from 0 to 5 etc.
	10 20 30 40 50 60 70 time in mins	B1 4	Freq. density or scaled freq. labelled on vertical axis, time or mins on horiz., 'class width' is not enough

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

1 (i) 2.5 1.25	B1 B1 2		For correct mean. For correct
(ii) 5 5	B1ft B1ft 2	<u> </u>	variance For correct mean. For correct variance
2 $H_0: p = 0.6$ $H_1: p > 0.6$	B1	I	For correct H ₀ and H ₁
$P(X \ge 10) = {}_{12}C_{10}0.6^{10}0.4^2 + {}_{12}C_{11}0.6^{11}0.4^1 + 0.6^{12} = 0.0834$	M1* M1*dep A1	i i	For one Bin term (n = 12, p = 0.6) For attempt <i>X</i> = 10, 11, 12 or equiv. For correct answer (or correct individual terms and dig showing 0.1)
Reject H ₀ , i.e. accept claim at 10% level	B1ft 5		For correct conclusion
S.R. Use of Normal scores 4/5 max $z = \frac{9.5 - 7.2}{\sqrt{2.88}}$	B1	ı	For correct H₀ and H₁
(or equiv. Using N(0.6, 0.24/12)) = 1.3552	M1	١	Use of N(7.2, 2.88) or N(0.6, 0.24/12) and standardising with or without cc
Pr(>9.5) = 1 - 0.9123 = 0.0877 Reject H ₀ , i.e. accept claim at 10%	A1		For correct answer or 1.3552 and 1.282 seen
level	B1ft	I	For correct conclusion
3 (i) $31\pm2.326 \times \frac{3}{\sqrt{20}}$	B1	ı	For correct mean
= (29.4, 32.6)	M1		Calculation of correct form
			$\bar{x} \pm z \times \frac{s}{\sqrt{n}}$
	B1 A1 4	2	(must have \sqrt{n} in denominator) z = 2.326 Correct answer
(ii) 30% is inside interval	ftB1*		
Accept claim (at 2% level)	ftB1*dep 2		S.R. Solutions not using (i) score B1ft only for correct working and conclusion
4 (i) P(X > 1.5) = $\left[x - \frac{x^2}{4}\right]_{1.5}^2$	M1		For substituting 2 and 1.5 in their $\int f(x)dx$ (or area method ½ their base x their height)
or 1 - $\left[x - \frac{x^2}{4}\right]_{.0}^{1.5}$			base x their height)
= 0.0625	A1 2		For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

	(ii)	E(X) =			
	()	$\int_{0}^{2} (x - \frac{1}{2}x^{2}) dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{6}\right]_{0}^{2}$	M1		For evaluating their $\int xf(x)dx$
		= 2/3	A1	2	For correct answer
	(iii)	$m-\frac{m^2}{4}=0.5$	M1		For equating their $\int f(x)dx$ to 0.5
		$m = 0.586 (2 - \sqrt{2})$	M1 A1	3	For solving the related quadratic For correct answer
5	(i)	$P(X < 1.7) = \Phi\left(\frac{1.7 - 2.1}{0.9/\sqrt{20}}\right)$ $= 1 - \Phi(1.9876)$	B1 M1 A1		For identifying prob Type I error For standardising For correct standardising and
		= 0.0234	A1	4	correct area For correct final answer
	(ii)	P(Type II error) = $P(X > 1.7)$	B1		For identifying prob for Type II error
		$= 1 - \Phi\left(\frac{1.7 - 1.5}{0.9 / \sqrt{20}}\right)$	M1		For standardising using 1.5 and their 1.7
			A1		For correct standardising and correct area
		= 1 - Φ (0.9938) = 0.160	A1	4	For correct final answer
6	(i)	λ = 1.25	M1		For attempting to find new λ and using it
		P(X < 4) =			doing it
		$e^{-1.25} \left(1 + 1.25 + \frac{1.25^2}{2} + \frac{1.25^3}{6} \right)$	M1		For summing P((0,) 1, 2, 3) or P(0, 1, 2, 3, 4) using a Poisson expression
		= 0.962	A1	3	For correct answer
	(ii)	X~N(182.5, 182.5) P(> 200 breakdowns) =	B1 M1		For correct mean and variance For standardising process with or without continuity correction
		$1 - \Phi\left(\frac{200.5 - 182.5}{\sqrt{182.5}}\right)$			
		= 1 - Φ (1.332)	A1ft		For correct standardising and correct tail
		= 0.0915 (0.0914)	A1	4	For correct answer
	(iii)	λ = 5 for phone calls λ = 6.25 for total	B1		
		$P(X = 4) = e^{-6.25} \left(\frac{6.25^4}{4!} \right)$	M1		For summing their two λ s and using a Poisson expression OR alt. method using sep. distributions 5
		= 0.123	A1	3	terms req. For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

7 (i) 20 of A ~A*	B1	For correct mean for either
~N(401, 20 x 0.15 ²)		
~N(401, 0.45)		
20 of <i>B</i> ~B* ~N(401, 1.458)	B1	For variance 20 x 0.15 ² or
1		20 x 0.27 ²
A* - B* ~N(0, 1.908)	M1	For adding their two variances
$P(A^* - B^* > 2)$		
(2-0)		
$= 1 - \Phi\left(\frac{2-0}{\sqrt{1.908}}\right)$	M1	For consideration of their $A^* - B^* > 2$
(11,33)		A - B > 2
$= 1 - \Phi (1.4479)$	M1	For standardising and finding
		correct area
= 0.0738	A1 6	For correct answer
OD A N/OO OF 0.452/00)		
OR A~N(20.05, 0.15 ² /20),	D4	
B~N(20.05, 0.27 ² /20)	B1	For correct mean for either
— — N/O O 00477)	B1 M1	For variance 0.15 ² /20 or 0.27 ² /20
A - B ~N(0, 0.00477)	IVI I	For adding their variances
$P(\overline{A} - \overline{B} > 0.1)$	M1	For consideration of their
` '		$\overline{A} - \overline{B} > 0.1$
$= 1 - \Phi\left(\frac{0.1 - 0}{\sqrt{0.00477}}\right)$	M1	For standardising and finding
$(\sqrt{0.00477})$		correct area
= 0.0738	A1 6	For correct answer
= 0.0700		. S. Sorroot anowor
(ii) $1.96 = \frac{20.07 - 20.05}{1.00}$	M1	For an equation of correct form on
(ii) $1.96 = \frac{20.07 - 20.05}{(0.15/\sqrt{n})}$		RHS involving \sqrt{n}
	B1	For 1.96 used
	M1	For solving an equation of correct
		form (any z)
n = 216	A1 4	For correct answer