Page 1	Mark Scheme	Syllabus
	MATHEMATICS - JUNE 2003	9709

Mark Scheme Notes

- Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 2	Mark Scheme	Syllabus
	MATHEMATICS - JUNE 2003	9709

- The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ "marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS
Paper 1 (Pure 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	1

1. $\begin{aligned} (2 x-1 / x)^{5} . & 4^{\text {th }} \text { term needed. } \\ & \rightarrow{ }_{5} C_{3}=5 \cdot 4 / 2 \\ & \rightarrow \times 2^{2} \times(-1)^{3} \\ & \rightarrow-40 \end{aligned}$	M1 DM1 A1 [3]	Must be $4^{\text {th }}$ term - needs $(2 x)^{2}(1 / x)^{3}$ Includes and converts ${ }_{5} \mathrm{C}_{2}$ or ${ }_{5} \mathrm{C}_{3}$ Co Whole series given and correct term not quoted, allow $2 / 3$
$\begin{array}{ll} \text { 2. } & \sin 3 \mathrm{x}+2 \cos 3 \mathrm{x}=0 \\ & \tan 3 \mathrm{x}=-2 \\ & \mathrm{x}=38.9(8) \\ \text { and } & \mathrm{x}=98.9(8) \\ \text { and } & \mathrm{x}=158.9(8) \end{array}$ NB. $\sin ^{2} 3 x+\cos ^{2} 3 x=0$ etc. MO But $\sin ^{2} 3 x=(-2 \cos 3 x)^{2}$ plus use of $\mathrm{s}^{2}+\mathrm{c}^{2}=1$ is OK Alt. $\sqrt{ } 5 \sin (3 \mathrm{x}+\alpha)$ or $\sqrt{ } 5 \cos (3 \mathrm{x}-\alpha)$ both OK	M1 A1 A1 $\sqrt{ }$ A1 $\sqrt{ }$ [4]	Use of $\tan =\sin \div \cos$ with $3 x$ Co For 60 + "his" For 120 + "his" and no others in range (ignore excess ans. outside range) Loses last A mark if excess answers in the range
3. (a) $d y / d x=4-12 x^{-3}$ (b) $\int=2 x^{2}-6 x^{-1}+c$ (a) (quotient OK M1 correct formula, A1 co)	$\begin{array}{r} \mathrm{B} 2,1 \\ {[2]} \\ 3 \times \mathrm{B} 1 \\ {[3]} \end{array}$	One off for each error (4, -, 12, -3) One for each term - only give +c if obvious attempt at integration
$\begin{aligned} & \text { 4. } \quad \begin{array}{ll} a & =-10 \quad a+14 d=11 \quad d=3 / 2 \\ a & +(n-1) d=41 \quad n=35 \end{array} \\ & \text { Either } \begin{aligned} S_{n} & =n / 2(2 a+(n-1) d) \text { or } n / 2(a+1) \\ & =542.5 \end{aligned} \end{aligned}$	M1 M1 A1 M1 A1 [5]	Using a $=(n-1) d$ Correct method - not for a + nd Co Either of these used correctly For his d and any n
5. (i) $2 \mathrm{a}+\mathrm{b}=1$ and $5 \mathrm{a}+\mathrm{b}=7$ $\rightarrow \mathrm{a}=2$ and $\mathrm{b}=-3$ $\begin{aligned} & \text { (ii) } f(x)=2 x-3 \mathrm{ff}(\mathrm{x})=2(2 \mathrm{x}-3)-3 \\ & \quad 4 \mathrm{x}-9 \\ & =0 \text { when } \mathrm{x}=2.25 \end{aligned}$	M1 A1 [2] M1 DM1 A1 [3]	Realising how one of these is formed Co Replacing " x " by "his $\mathrm{ax}+\mathrm{b}$ " and "+b" For his a and b and solved $=0$ Co

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	1

6. (i)

(ii) $x=\pi / 2, y=3$ (allow if 90°)
$\rightarrow \mathrm{k}=6 / \pi \mathrm{co}$.
(iii) $(-\pi / 2,-3)-$ must be radians
7. (i)

Gradient of $\mathrm{L}_{1}=-2$
Gradient of $L_{2}=1 / 2$
Eqn of $L_{2} y-4=1 / 2(x-7)$
(ii) Sim Eqns
$\rightarrow \mathrm{x}=3, \mathrm{y}=2$
$A B=\sqrt{ }\left(2^{2}+4^{2}\right)=\sqrt{ } 20$ or 4.47
8.

$$
\text { (i) } \begin{aligned}
& \overrightarrow{\mathrm{BA}}=\mathbf{a}-\mathbf{b}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k} \\
& \overrightarrow{\mathrm{BC}}=\mathbf{c}-\mathbf{b}=-2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k} \\
& \text { Dot product }=-2+8-6=0 \\
& \rightarrow \text { Perpendicular }
\end{aligned}
$$

(ii) $\overrightarrow{\mathrm{BC}}=\mathbf{c}-\mathbf{b}=-2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$
$\overrightarrow{A D}=\mathbf{d}-\mathbf{a}=-5 \mathbf{i}+10 \mathbf{j}+5 \mathbf{k}$
These are in the same ratio 1 parallel

Ratio $=2: 5($ or $\sqrt{ } 24: \sqrt{ } 150)$

B2, 1
[2]
implied, for $-\pi$ to π. Degrees ok

B1 Co (could come from incorrect graph)
Realising maximum is $(\pi / 2,3)+$ sub Co (even if no graph)

Co - anywhere
Use of $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
Use of line eqn - or $y=m x+c$. Line
must be through $(7,4)$ and nonparallel

Solution of 2 linear eqns
Co
Correct use of distance formula. Co

M1 Knowing how to use position vector for $\overrightarrow{\mathrm{BA}}$ or $\overrightarrow{\mathrm{BC}}$ - not for $\overrightarrow{\mathrm{AB}}$ or $\overrightarrow{\mathrm{CB}}$ Knowing how to use $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. Co (uses $\overrightarrow{\mathrm{AB}}$ or $\overrightarrow{\mathrm{CB}}$ - can get 3 out of 4)

M1
Knowing how to get one of these

Both correct + conclusion. Could be dot product $=60 \rightarrow$ angle $=0^{\circ}$

M1A1
Knowing what to do. Co. Allow 5:2

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	1

9. (i) $\theta=1$ angle $\mathrm{BOC}=\pi-\theta$ Area $=1 / 2 \mathrm{r}^{2} \theta=68.5$ or $32(\pi-1)$ (or $1 / 2$ circle-sector) (ii) $8+8+8 \theta=1 / 2(8+8+8(\pi-\theta))$ Solution of this eqn $\rightarrow 0.381 \text { or } 1 / 3(\pi-2)$ (iii) $\begin{aligned} & \theta=\pi / 3 \quad A B=8 \mathrm{~cm} \\ & B C=2 \times 8 \sin \pi / 3=8 \sqrt{ } 3 \\ & \text { Perimeter }=24+8 \sqrt{ } 3 \end{aligned}$	B1 M1 A1 [3] M1 M1 A1 [3] B1 M1 A1 [3]	For $\pi-\theta$ or for $1 / 2 \pi r^{2}$ - sector Use of $1 / 2 r^{2} \theta$ Co NB. 32 gets M1 only Relevant use of $s=r \theta$ twice Needs θ - collected - needs perimeters Co. Co. Valid method for BC - cos rule, Pyth allow decimals here Everything OK. Answer given NB. Decimal check loses this mark
10. $y=\sqrt{ }(5 x+4)$ (i) $\begin{aligned} & d y / d x=1 / 2(5 x+4)^{-1 / 2} x 5 \\ & x=1, d y / d x=5 / 6 \end{aligned}$ (ii) $\begin{aligned} & \mathrm{dy} / \mathrm{dt}=\mathrm{dy} / \mathrm{dx} \times \mathrm{dx} / \mathrm{dt} \\ & =5 / 6 \times 0.03 \\ & \rightarrow 0.025 \end{aligned}$ (iii) realises that area \rightarrow integration $\int=(5 x+4)^{3 / 2} \div 3 / 2 \div 5$ Use of limits \rightarrow 54/15-16/15 $=38 / 15=2.53$	B1B1 B1 [3] M1 A1 $\sqrt{ }$ [2] M1 A1A1 DM1 A1 [5]	$1 / 2(5 x+4)^{-1 / 2} \times 5 \quad$ B1 for each part Co Chain rule correctly used For (i) $\times 0.03$ Realisation + attempt - must be $(5 x+4)^{k}$ For $(5 x+4)^{3 / 2} \div 3 / 2$. For $\div 5$ Must use " 0 " to " 1 " Co

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	1

11. (i) $8 x-x^{2}=a-x^{2}-b^{2}-2 b x+$ equating
$\rightarrow b=-4$
$a=b^{2}=16$ (i.e. $\left.16-(x-4)^{2}\right)$
(ii) $\mathrm{dy} / \mathrm{dx}=8-2 \mathrm{x}=\mathrm{o}$ when $\rightarrow(4,16)$ (or from -b and a)
(iii) $8 x-x^{2} \geq-20$
$x^{2}-8 x-20=(x-10)(x+2)$
End values -2 and 10 Interval -2 $x \leq 10$
$g: x \rightarrow 8 x-x^{2}$ for $x \geq 4$
(iv) domain of g^{-1} is $\mathrm{x} \leq 16$ range of g^{-1} is $\mathrm{g}^{-1} \geq 4$
(v) $y=8 x-x^{2} \rightarrow x^{2}-8 x+y=0$
$x=8 \pm \sqrt{ }(64-4 y) \div 2$ $g^{-1}(x)=4+\sqrt{ }(16-x)$
or $(x-4)^{2}=16-y \rightarrow x=4+\sqrt{ }(16-y)$

$$
\quad \rightarrow y=4+\sqrt{ }(16-x)
$$

Knows what to do - some equating Anywhere - may be independent For 16-() ${ }^{2}$

Any valid complete method Needs both values

Sets to $0+$ correct method of solution
Co - independent of < or > or =
Co - including \leq (< gets AO)

From answer to (i) or (ii). Accept <16 Not f.t since domain of g given

Use of quadratic or completed square expression to make x subject

Replaces y by x Co (inc. omission of -)

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02
MATHEMATICS
Paper 2 (Pure 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	2

1 EITHER: State or imply non-modular inequality $(x-4)^{2}>(x+1)^{2}$, or corresponding equation
Expand and solve a linear inequality, or equivalent M1
Obtain critical value $11 / 2$ A1
State correct answer $x<11 / 2 \quad$ (allow $\leq) \quad$ A1
OR: \quad State a correct linear equation for the critical value e.g. $4-x=x+1 \quad B 1$
Solve the linear equation for x M1
Obtain critical value $11 / 2$, or equivalent A1
State correct answer $x<1 \frac{1}{2}$ A1
OR: \quad State the critical value $11 / 2$, or equivalent, from a graphical method or by inspection or by solving a linear inequality
State correct answer $x<11 / 2$

Obtain $a^{2}=9$ and $2 a=6$, or equivalent
State answer $a=3$ only A1
OR: \quad Attempt division by $x^{2}+a x+1$ or $x^{2}-a x-1$, and obtain an equation in a M1 Obtain $a^{2}=9$ and either $a^{3}-1$ la $+6=0$ or $a^{3}-7 a-6=0$, or equivalent A1 State answer $a=3$ only A1
[Special case: the answer $a=3$, obtained by trial and error, or by inspection, or with no working earns B2.]
(ii) Substitute for a and attempt to find zeroes of one of the quadratic factorsM1 Obtain one correct answer
State all four solutions $1 / 2(-3 \pm \sqrt{5})$ and $1 / 2(3 \pm \sqrt{13})$, or equivalent

3 (i) $\begin{array}{ll}\text { State or imply indefinite integral of } e^{2 x} \text { is } 1 / 2 e^{2 x} \text {, or equivalent } & \text { B1 } \\ & \text { Substitute correct limits correctly }\end{array}$
Obtain answer $R=1 / 2 e^{2 p}-1 / 2$, or equivalent
(ii) Substitute $R=5$ and use logarithmic method to obtain an equation in $2 p$

Obtain answer $p=1.2$ (1.1989 ...)

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	2

6 (i) | Attempt to apply the chain or quotient rule | |
| :--- | ---: |
| Obtain derivative of the form $\frac{{k \sec ^{2} x}_{\left(1+\tan ^{2}\right)^{2}} \text { or equivalent }}{}$ | M1 |
| Obtain correct derivative $-\frac{\sec ^{2} x}{(1+\tan x)^{2}}$ or equivalent | |\quad A1

(ii) State or imply correct ordinates: 1, 0.7071.., 0.5 B1

Use correct formula, or equivalent, with $h=1 / 8 \pi$ and three ordinates M1
Obtain answer $0.57(0.57220 \ldots) \pm 0.01$ (accept 0.18π) A1

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	2

(iii) Justify the statement that the rule gives an over-estimate B1

7 (i) State $\frac{d x}{d \theta}=2-2 \cos 2 \theta$ or $\frac{d y}{d \theta}=2 \sin 2 \theta$
Use $\frac{d y}{d x}=\frac{d y}{d \theta} \div \frac{d x}{d \theta}$
M1
Obtain answer $\frac{d y}{d x}=\frac{2 \sin 2 \theta}{2-2 \cos 2 \theta}$ or equivalent A1

Make relevant use of $\sin 2 A$ and $\cos 2 A$ formulae
(indep.) M1
Obtain given answer correctly
A1
(ii) Substitute $\theta=1 / 4 \pi$ in $\frac{d y}{d x}$ and both parametric equations M1

Obtain $\frac{d y}{d x}=1, x=1 / 2 \pi-I, y=2$
A1
Obtain equation $y=x+1.43$, or any exact equivalent
(iii) State or imply that tangent is horizontal when $\theta=\frac{1}{2} \pi$ or $3 / 2 \pi \quad$ B1

Obtain a correct pair of x, y or x - or y-coordinates B1
State correct answers $(\pi, 3)$ and $(3 \pi, 3) \quad$ B1

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03
 MATHEMATICS AND HIGHER MATHEMATICS

 Paper 3 (Pure 3)| Page 1 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | A AND AS LEVEL - JUNE 2003 | $9709 / 8719$ | 3 |

[^0]State first step of the form $k x e^{2 x} \pm \int k e^{2 x} d x \quad$ M1
Complete the first step correctly
Substitute limits correctly having attempted the further integration of $k e^{2 x}$
Obtain answer $1 / 4\left(\mathrm{e}^{2}+1\right)$ or exact equivalent of the form $\mathrm{ae}^{2}+b$, having used $\mathrm{e}^{0}=1$ throughout

3 EITHER State or imply non-modular inequality $(x-2)^{2}<(3-2 x)^{2}$, or corresponding equation
Expand and make a reasonable solution attempt at a 2 - or 3-term quadratic, or equivalent M1
Obtain critical value $x=1$ A1
State answer $x<1$ only A1
$O R \quad$ State the relevant linear equation for a critical value,
i.e. $2-x=3-2 x$, or equivalent B1
Obtain critical value $x=1$ B1
State answer $x<1$ B1
State or imply by omission that no other answer exists B1
OR Obtain the critical value $x=1$ from a graphical method, or by inspection, or by solving a linear inequality B2
State answer $x<1$ B1
State or imply by omission that no other answer exists B1

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	3

4 (i) EITHER State or imply that $x-2$ is a factor of $\mathrm{f}(x)$
Substitute 2 for x and equate to zero M1
Obtain answer $a=8$ A1
[The statement $(x-2)^{2}=x^{2}-4 x+4$ earns B1.]
OR Commence division by $x^{2}-4 x+4$ and obtain partial quotient $x^{2}+2 x$ B1
Complete the division and equate the remainder to zero M1
Obtain answer $a=8$ A1
OR Commence inspection and obtain unknown factor $x^{2}+2 x+c$ B1
Obtain $4 c=a$ and an equation in c M1
Obtain answer $a=8$ A1
(ii) EITHER Substitute $a=8$ and find other factor $x^{2}+2 x+2$ by inspection or division

B1
State that $x^{2}-4 x+4 \geq 0$ for all x (condone $>$ for \geq) B1
Attempt to establish sign of the other factor M1
Show that $x^{2}+2 x+2>0$ for all x and complete the proof A1
[An attempt to find the zeros of the other factor earns M1.]
OR Equate derivative to zero and attempt to solve for x M1
Obtain $x=-1 / 2$ and 2
Show correctly that $\mathrm{f}(x)$ has a minimum at each of these values A1
Having also obtained and considered $x=0$, complete the proof

5 (i) State or imply $w=\cos \frac{2}{3} \pi+\operatorname{isin} \frac{2}{3} \pi$ (allow decimals)
Obtain answer $u w=-\sqrt{3}-i$ (allow decimals)
Multiply numerator and denominator of $\frac{u}{w}$ by $-1-\mathrm{i} \sqrt{3}$, or equivalent M1
Obtain answer $\frac{u}{w}=\sqrt{3}-\mathrm{i}$ (allow decimals)
(ii) Show U on an Argand diagram correctly B1

Show A and B in relatively correct positions
(iii) Prove that $A B=U A$ (or $U B$), or prove that angle $A U B=$ angle $A B U$ (or angle $B A U$) or prove, for example, that $A O=O B$ and angle $A O B=120^{\circ}$, or prove that one angle of triangle $U A B$ equals 60°
Complete a proof that triangle $U A B$ is equilateral

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	3

6 (i) EITHER $\begin{array}{ll}\text { State or imply } \mathrm{f}(x) \equiv \frac{A}{2 x+1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} & \text { B1 } \\ & \text { State or obtain } A=1 \\ & \\ & \text { State or obtain } C=8 \\ & \text { Use any relevant method to find } B \\ & \text { Obtain value } B=4 \\ \text { OR } & \text { State or imply } \mathrm{f}(x) \equiv \frac{A}{2 x+1}+\frac{D x+E}{(x-2)^{2}} \\ & \text { M1 } \\ & \text { A1 } \\ & \text { Aste or obtain } A=1 \\ & \text { Use any relevant method to find } D \text { or } E \\ & \text { Obtain value } D=4 \\ & \text { Obtain value } E=0\end{array}$
(ii) EITHER Use correct method to obtain the first two terms of the
expansion of $(1+2 x)^{-1}$ or $(x-2)^{-1}$ or $(x-2)^{-2}$ or $(1-1 / 2 x)^{-1}$ or $(1-1 / 2 x)^{-2}$ M1
Obtain any correct sum of unsimplified expansions up to the terms in x^{2} (deduct A1 for each incorrect expansion)
Obtain the given answer correctly
[Unexpanded binomial coefficients involving -1 or -2, e.g. $\binom{-2}{1}$ are not sufficient for the M1.]
[f.t. is on A, B, C, D, E.]
[Apply this scheme to attempts to expand $\left(9 x^{2}+4\right)(1+2 x)^{-1}(x-2)^{-2}$, giving M1A2 for a correct product of expansions and A1 for multiplying out and reaching the given answer correctly.]
[Allow attempts to multiply out $(1+2 x)(x-2)^{2}\left(1-x+5 x^{2}\right)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^{2}, M1 for attempting to multiply out as far as terms in x^{2}, A1 for a correct expansion, and A1 for obtaining $9 x^{2}+4$ correctly.]
[SR: B or C omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain A, B, or C, but no further marks. In part (ii) only the M 1 and $\mathrm{A} 1 \sqrt{ }$ for an unsimplified sum are available.]
[SR: E omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain A or D, but no further marks. In part (ii) award M1A2 $\sqrt{\text { A1 }}$ as in the scheme.]

OR Differentiate and evaluate $f(0)$ and $f^{\prime}(0) \quad$ M1
Obtain $f(0)=1$ and $f^{\prime}(0)=-1$ A1
Differentiate and obtain $f^{\prime \prime}(0)=10$
Form the Maclaurin expansion and obtain the given answer correctly A1

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	3

7 (i) State or imply that $\frac{d x}{d t}=k(100-x)$
(ii) Separate variables and attempt to integrate $\frac{1}{100-x}$
Obtain term - In (100-x), or equivalent A1
Obtain term $0.02 t$, or equivalent A1
Use $x=5, t=0$ to evaluate a constant, or as limits M1
Obtain correct answer in any form, e.g. $-\ln (100-x)=0.02 t-\ln 95$ A1

Rearrange to give x in terms of t in any correct form, e.g. $x=100-95 \exp (-0.02 t)$
[SR: In $(100-x)$ for $-\ln (100-x)$. If no other error and $x=100-95 \exp (0.02 t)$ or equivalent obtained, give M1A0A1M1A0A1 $\sqrt{ }$]
(iii) State that x tends to 100 as t becomes very large

8 (i) State derivative $\frac{1}{x}-\frac{2}{x^{2}}$, or equivalent
Equate 2-term derivative to zero and attempt to solve for x
M1
Obtain coordinates of stationary point ($2, \ln 2+1$), or equivalent
A1+A1
Determine by any method that it is a minimum point, with no incorrect work seen
(ii) State or imply the equation $\alpha=\frac{2}{3-\ln \alpha}$

Rearrange this as $3=\ln \alpha+\frac{2}{\alpha}$ (or vice versa)
(iii) Use the iterative formula correctly at least once M1

Obtain final answer 0.56
Show sufficient iterations to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(0.555,0.565)$

9 (i) State or imply a correct normal vector to either plane,
e.g. $\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ or $2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$

Carry out correct process for evaluating the scalar product of both the normal vectors
Using the correct process for the moduli, divide the scalar product of the two normals by the product of their moduli and evaluate the inverse cosine of the result
Obtain answer 40.4° (or 40.3°) or 0.705 (or 0.704) radians
[Allow the obtuse answer 139.6° or 2.44 radians]

Page 5	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	3

(ii) EITHER Carry out a complete strategy for finding a point on l M1
Obtain such a point e.g. $(0,3,2)$ A1
EITHER Set up two equations for a direction vector
$a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ of l, e.g. $a+2 b-2 c=0$ and $2 a-3 b+6 c=0$ B1
Solve for one ratio, e.g. $a: b$ M1
Obtain $a: b: c=6:-10:-7$, or equivalent A1
State a correct answer, e.g. $\mathbf{r}=3 \mathbf{j}+2 \mathbf{k}+\lambda(6 \mathbf{i}-10 \mathbf{j}-7 \mathbf{k})$ A1 $\sqrt{ }$
OR Obtain a second point on l, e.g. (6, -7, -5) A1
Subtract position vectors to obtain a direction vector for l M1
Obtain 6i-10j-7k, or equivalent A1
State a correct answer, e.g. $\mathbf{r}=3 \mathbf{j}+2 \mathbf{k}+\lambda(6 \mathbf{i}-10 \mathbf{j}-7 \mathbf{k})$ A1 $\sqrt{ }$
OR Attempt to find the vector product of the two normal vectors M1
Obtain two correct components A1
Obtain $6 \mathbf{i}-10 \mathbf{j}-7 \mathbf{k}$, or equivalent A1
State a correct answer, e.g. $\mathbf{r}=3 \mathbf{j}+2 \mathbf{k}+\lambda(6 \mathbf{i}-10 \mathbf{j}-7 \mathbf{k})$ A1 $\sqrt{ }$
OR Express one variable in terms of a second M1
Obtain a correct simplified expression, e.g. $x=(9-3 y) / 5$ A1
Express the same variable in terms of the third and forma three term equationM1
Incorporate a correct simplified expression, e.g. $x=(12-6 z) / 7$in this equationA1
Form a vector equation for the line M1
State a correct answer, e.g. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right)+\left(\begin{array}{l}1 \\ -5 / 3 \\ -7 / 6\end{array}\right) \lambda$, or equivalent A1 $\sqrt{ }$
OR Express one variable in terms of a second M1
Obtain a correct simplified expression, e.g. $y=(9-5 x) / 3$ A1
Express the third variable in terms of the second M1
Obtain a correct simplified expression, e.g. $z=(12-7 x) / 6$ A1
Form a vector equation for the lineM1
State a correct answer, e.g. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ -5 / 3 \\ -7 / 6\end{array}\right)$, or equivalent A1 $\sqrt{ }$
10 (i) EITHER Make relevant use of the correct $\sin 2 A$ formula M1
Make relevant use of the correct cos $2 A$ formula M1
Derive the given result correctly A1
OR Make relevant use of the tan $2 A$ formula M1
Make relevant use of $1+\tan ^{2} A=\sec ^{2} A$ or $\cos ^{2} A+\sin ^{2} A=1$ M1
Derive the given result correctly A1

State correct integral $1 / 2 \ln \sin 2 x$ A1
Obtain answer $1 / 41$ n 3 , or equivalent A1
or equivalent M1
Substitute limits correctly M1
Obtain answer $1 / 4 \ln 3$, or equivalent A1

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04
 MATHEMATICS
 Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

Mechanics 1

1	(i)	Tension is 8000 N or 800 g Accept 7840 N (from 9.8) or 7850 (from 9.81)	B1	1
	(ii)	For using $P=\frac{\Delta W}{\Delta t}$ or $P=T v$	M1	
		$\Delta W=8000 \times 20 \text { or } v=\frac{20}{50}$	A1 ft	
		Power applied is 3200 W Accept 3140 W (from 9.8 or 9.81)	A1	3
		SR (for candidates who omit g) (Max 2 out of 3)		
2	(i) (a)	For resolving in the direction $P Q$	M1	
		Component is $2 \times 10 \cos 30^{\circ}-6 \cos 60^{\circ}$ or 14.3 N or $10 \sqrt{3}-3 \mathrm{~N}$	A1	2
	(b)	Component is $\pm 6 \cos 30^{\circ}-6 \cos 60^{\circ}$ or $\pm 5.20 \mathrm{~N}$ or $\pm 3 \sqrt{3} \mathrm{~N}$	B1	1
		SR (for candidates who resolve parallel to and perpendicular to the force of magnitude 6 N) (Max 2 out of 3) For resolving in both directions For $X=6-10 \cos 30^{\circ}$ or -2.66 N and $Y=10+10 \sin 30^{\circ} \text { or } 15 \mathrm{~N}$ SR (for candidates who give a combined answer for (a) and (b)) For resolving in both directions For $\left(6 \cos 30^{\circ}\right) \mathbf{i}+\left(2 \times 10 \cos 30^{\circ}-6 \cos 60^{\circ}\right) \mathbf{j}$ or any vector equivalent		
	(ii)	For using Magnitude $=\sqrt{\text { ans }(i)^{2}+a n s(i i)^{2}}$	M1	
		Magnitude is 15.2 N ft only following sin/cos mix and for answer 5.66 N	A1 ft	2
3	(i)	Region under $v=2 t$ from $t=0$ to $t=T$ indicated	B1	1
	(ii)	For attempting to set up and solve an equation using area $\Delta=16 \quad$ or \quad for using $s=1 / 22 t^{2}$	M1	
		For $16=1 / 22 T^{2}$	A1	
		$T=4$	A1	3
		SR (for candidates who find the height of the Δ but do not score M1) (Max 1 out of 3) For $h / T=2$ or $h=2 T$ or $v=8$		

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

6	(i)	For using $F=\mu R$ and $R=m g \quad(F=0.025 \times 0.15 \times 10)$	M1	
		Frictional force is 0.0375 N or $3 / 80 \mathrm{~N}$ Accept 0.0368 from 9.8 or 9.81	A1	2
	(ii)	For using $F=m a(-0.0375=0.15 \mathrm{a})$ or $d=\mu g$	M1	
		Deceleration is $0.25 \mathrm{~ms}^{-2}$ (or $a=-0.25$) A.G.	A1	2
	(iii)	For using $s=u t+\frac{1}{2} a t^{2} \quad\left(s=5.5 \times 4+\frac{1}{2}(-0.25) 16\right)$	M1	
		Distance $A B$ is 20 m	A1	2
	(iv)	For using $v^{2}=u^{2}+2 a s \quad\left(v^{2}=3.5^{2}-2 \times 0.25 \times 20\right)$	M1	
		Speed is $1.5 \mathrm{~ms}^{-1} \quad(\mathrm{ft} \sqrt{(24.5-(i i i)) / 2})$	A1 ft	2
	(v)	Return dist. $=\frac{3.5^{2}}{2 \times 0.25}$ or distance beyond $A=\frac{(i v)^{2}}{2 \times 0.25}$	M1	
		Total distance is 44.5 m (ft $24.5+$ (iii) or $2\left((\mathrm{iv})^{2}+(\mathrm{iii})\right)$	A1 ft	2
7	(i)	PE gain $=m g\left(2.5 \sin 60^{\circ}\right)$	B1	
		For using KE $=1 / 2 m v^{2}$	M1	
		For using the principle of conservation of energy $\left(1 / 2 m 8^{2}-1 / 2 m v^{2}=m g\left(2.5 \sin 60^{\circ}\right)\right)$	M1	
		Alternative for the above 3 marks: For using Newton's Second Law or stating $a=-g \sin 60^{\circ}$ $a=-8.66$ (may be implied) For using $v^{2}=u^{2}+2 a s \quad\left(v^{2}=64-2 \times 8.66 \times 2.5\right)$	M1* A1 M1dep*	
		Speed is $4.55 \mathrm{~ms}^{-1}$ Accept 4.64 from 9.8 or 9.81	A1	4
	(ii)	For using $1 / 2 m u^{2}(>) m g h_{\text {max }} \quad\left(1 / 28^{2}>10 h_{\text {max }}\right)$	M1	
		For obtaining 3.2 m A.G.	A1	2
	(iii)	Energy is conserved or absence of friction or curve $B C$ is smooth (or equivalent) and B and C are at the same height or the $P E$ is the same at A and B (or equivalent)	B1	1

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

(iv)	WD against friction is 1.4×5.2	B1	
	For WD = KE loss (or equivalent) used	M1	
	$\begin{aligned} & 1.4 \times 5.2=\frac{1}{2} 0.4\left(8^{2}-v^{2}\right) \text { or } \\ & 1.4 \times 5.2=\frac{1}{2} 0.4\left((i)^{2}-v^{2}\right)+0.4 \times 10\left(2.5 \sin 60^{\circ}\right) \\ & (12.8 \text { or } 4.14+8.66) \end{aligned}$	A1	
	Alternative for the above 3 marks: For using Newton's Second Law $0.4 g\left(2.5 \sin 60^{\circ} \div 5.2\right)-1.4=0.4 a \quad(a=0.6636)$ For using $v^{2}=u^{2}+2 a s$ with $u \neq 0$ $\left(v^{2}=4.55^{2}+2 \times 0.6636 \times 5.2\right)$	M1* A1 M1dep*	
	Speed is $5.25 \mathrm{~ms}^{-1}$	A1	4

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05
 MATHEMATICS AND HIGHER MATHEMATICS
 Paper 5 (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	5

Mechanics 2

1 The distance from the centre to the rod is $\sqrt{25^{2}-24^{2}}$
For taking moments about the centre of the ring or about the mid-point of the rod, or C.O.M. of frame (correct number of terms required in equation)
$(1.5+0.6) \bar{x}=0.6 \times 7$ or $(1.5+0.6)(7-\bar{x})=1.5 \times 7$
$1.5 \bar{x}=0.6(7-\bar{x})$
Distance is 2 cm
SR Allow M1 for $48.7=(50 \pi+48) \bar{x}$
2 (i) $O Q=4 \tan 20^{\circ}(=1.456)$ B1
$O G=1.5 \quad$ B1
G not between O and Q (all calculations correct)
B1

3
(ii) Hemisphere does not fall on to its plane face

Because the moment about P is clockwise or the centre of mass is to right of $P Q$

3 (i) Rope is at 30° to wall, or beam is at 0° to the horizontal or a correct trig. ratio used

For taking moments about A or For taking moments about P and resolving horizontally M1
$2.5 \mathrm{~T}=45 \mathrm{~g} \times 3 \cos 30^{\circ} \quad$ or
$5 H=45 \mathrm{~g} \times 3 \cos 30^{\circ}$ and $H=T \sin 30^{\circ}$
Tension is 468 N
(ii) Horizontal component is $234 \mathrm{~N}\left(\mathrm{ft}^{1 / 2} T\right) \quad \mathrm{B} 1 \mathrm{ft}$

For resolving forces vertically $\left(V=45 g-T \cos 30^{\circ}\right) \quad$ M1
Magnitude of vertical component is 45 N A1 ft
SR angle incorrect (i) B0, M1, A1 ft A0, (ii) B1 ft (T and angle), M1, A0

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	5

4 (i) For using Newton's second law with $a=v \frac{d v}{d x}$
$-\frac{1}{3 v}=0.2 v \frac{d v}{d x}$
$3 v^{2} \frac{d v}{d x}=-5$ from correct working
(ii) For separating the variables and attempting to integrate
$v^{3}=(A)-5 x$
For using $x=0$ and $v=4$ to find A, and then substituting
$x=7.4$ (or equivalent using limits)
$v=3$

5
 (i) For resolving forces vertically (3 term equation)

$\mathrm{T} \cos 60^{\circ}+0.5 \times 10=8$
Tension is 6 N
(ii) Radius of circle is $9 \sin 60^{\circ}$ (7.7942)

Alternative for the above 2 marks:
For using Newton's second law perpendicular to the string with $\mathrm{a}=\frac{v^{2}}{r}$
$(8-0.5 \times 10) \sin 60^{\circ}=0.5 \frac{v^{2}}{\left(9 \sin 60^{\circ}\right)} \cos 60^{\circ}$
Speed is $9 \mathrm{~ms}^{-1}$

NB Use of $m r \omega^{2}$, the M1 is withheld until $v=r \omega$ is used
SR Lift perpendicular to the string:
(i) $8 \sin 60^{\circ}=0.5 \mathrm{~g}+T \cos 60^{\circ} \rightarrow T=3.86: \mathrm{M} 1, \mathrm{~A} 1, \mathrm{~A} 1$ (-1 MR) (2 out of 3 max);
(ii) $3.86 \sin 60^{\circ}+8 \cos 60^{\circ}=\frac{0.5 v^{2}}{9 \sin 60^{\circ}}: B 1, M 1, \mathrm{~A} 1 \sqrt{ }, \mathrm{~A} 1(-1 \mathrm{MR})(3$ out of $4 \max)$
$\Rightarrow \underline{10.7}$

6 (i) For using $y=\dot{y}_{0} t-\frac{1}{2} g t^{2}$ with $y=0$ and $t=10$ or $\dot{y}=\dot{y}_{0}-g t$ with $\dot{y}=0$ and $t=5$
$0=60 \sin \alpha \times 10-\frac{1}{2} \times 10 \times 10^{2}$ or $0=60 \sin \alpha-10 \times 5$
$\alpha=56.4^{\circ}$
(ii) For substituting $t=5$ into $y=\dot{y}_{0} t-\frac{1}{2} g t^{2}$ or $\dot{y}=0$ into $\dot{y}^{2}=\dot{y}_{0}{ }^{2}-2 g y$ or $\dot{y}=0$ and $t=5$ into $y=\frac{\dot{y}_{0}+\dot{y}}{2} t$

Greatest height is 125 m
(iii) $\dot{y}=60 \sin \alpha-g T$
$\dot{x}=60 \cos \alpha$
For attempting to solve $\dot{x}=\dot{y}$, or a complete method for an equation in T using $\dot{x}=\dot{y}$
$T=1.68$ A1

NB. Use of $\dot{y}_{0}=60$ in (i) and (ii) is M0

Syllabus	Paper
$9709 / 8719$	5

7
(i) For using $T=\frac{\lambda x}{L} \quad\left(\frac{130 \times 3}{10}\right.$ or $\left.\frac{130 \times 1.5}{5}\right)$

M1

Tension is 39 N
(ii) For resolving forces vertically ($m g=2 \times 39 \times \frac{5}{13}$)

Mass is 3 kg
(iii) Extension = 20-10 (or 10-5)

For using EPE $=\frac{\lambda x^{2}}{2 L}$
(L must be 10 or 5 ; must be attempt at extension, e.g. $x=20$ or $x=8-2.5$ is MO)
[EPE $=\frac{130 \times 10^{2}}{2 \times 10}$ or EPE $=2 \times \frac{130 \times 5^{2}}{2 \times 5}$]
(Allow M1 only for $x=2$ or 3) M1

EPE is 650 J (ft attempted extension in lowest position)
(iv) Change in GPE $=3 \times 10 \times 8$

For using the principle of conservation of energy with
KE, GPE and EPE all represented
$650=1 / 23 v^{2}+3 \times 10 \times 8+\frac{130 \times 2^{2}}{2 \times 10}$
Speed is $16 \mathrm{~ms}^{-1}$

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL
 AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06
 MATHEMATICS
 Paper 6 (Probability and Statistics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 0390$	6

1	(i)	False zero	B1	1	Or any sensible answer
	(ii)	(a) StemLeaf 3 45 4 145 5 02 6 2 7 339 8 344556679 9 1 Key 3\| 4 rep 34, or stem width $=10$	B1 B1 B1	3	For correct stem, i.e. not 30, 40, 50 etc. For correct leaf, must be sorted For key, NB 30\| 4 rep 34 gets B1 here
		(b) 79	B1 ft	1	For correct answer, only ft from a sorted stem and leaf diagram
2	(i)	$\begin{aligned} & \mathrm{P}(N, \bar{N})=\frac{3}{10} \times \frac{7}{9} \\ & \text { Mult. By } 2=7 / 15 \text { AG } \\ & \text { OR Total ways }{ }_{10} \mathrm{C}_{2}(=45) \\ & \text { Total } 1 \text { of each } \\ & \quad \begin{array}{l} 7 \mathrm{C}_{1} \times{ }_{3} \mathrm{C}_{1}(=21) \\ \text { Prob }=21 / 45=7 / 15 \mathrm{AG} \end{array} \end{aligned}$	M1 A1 M1 A1	2 2	For multiplying 2 relevant possibilities For obtaining given answer legitimately For both totals For obtaining correct answer
	(ii)		M1 M1 B1	3	For 2 correct numbers multiplied together, can be implied For 2 correct numbers multiplied together or subtracting from 1 All correct. Table correct and no working gets $3 / 3$
	(iii)	$\begin{array}{r} \mathrm{E}(X)=1 \times 7 / 15+2 \times 1 / 15 \\ =3 / 5 \end{array}$	B1 ft	1	For correct answer or equivalent. Only ft if $\sum \mathrm{p}=1$
3	(i)	$\begin{aligned} \mathrm{P}(X> & 120) \\ & =1-\Phi\left(\frac{120-112}{17.2}\right) \\ & =1-\Phi(0.4651) \\ & =1-0.6790=0.321 \end{aligned}$	M1 M1 A1	3	For standardising with or without the $\sqrt{ }$, 17.2 ${ }^{2}$, but no cc. For finding the correct area, 1 - their $\Phi(\mathrm{z})$, NOT $\Phi(1-$ their $\mathrm{z}(0.4651))$ For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 0390$	6

	(ii)	$\begin{aligned} & z=-0.842 \\ & -0.842=\frac{103-115}{\sigma} \end{aligned}$ $\sigma=14.3$	B1 M1 A1	3	For $z, \pm 0.842$ or ± 0.84 For solving an equation involving their z or $z=0.7881$ or 0.5793 only, 103, 115 and σ or $\sqrt{ } \sigma$ or σ^{2}, i.e. must have used tables For correct answer
4	(i)	$\begin{aligned} & (0.7)^{24} \times(0.3)^{6} \times{ }_{30} C_{24} \\ & =0.0829 \end{aligned}$ OR normal approx. $\begin{aligned} & P(24)=\Phi((24.5-21) / \sqrt{ } 6.3)) \\ & -\Phi((23.5-21) / \sqrt{ } 6.3)) \\ & =0.9183-0.8404=0.0779 \end{aligned}$	M1 A1 M1 A1	2 2	For relevant binomial calculation For correct answer For subtracting the 2 phi values as written For correct answer
	(ii)	$\begin{aligned} & \mu=30 \times 0.7=21, \\ & \sigma^{2}=30 \times 0.7 \times 0.3=6.3 \\ & \mathrm{P}(<20)=\Phi\left(\frac{19.5-21}{\sqrt{6.3}}\right)= \\ & \Phi(-0.5976) \\ & =1-0.7251=0.275 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	5	For 21 and 6.3 seen For standardising process, must have $\sqrt{ }$, can be + or - For continuity correction 19.5 or 20.5 For using 1 - some area found from tables For correct answer
5	(i)	${ }_{6} \mathrm{C}_{3} \times{ }_{4} \mathrm{C}_{2}=120$	M1 A1	2	For multiplying 2 combinations together, not adding, no perms, ${ }_{10} \mathrm{C}_{3} \mathrm{X}{ }_{10} \mathrm{C}_{2}$ or ${ }_{5} \mathrm{C}_{3} \times{ }_{5} \mathrm{C}_{2}$ would get M1 For answer 120
	(ii)	$\begin{aligned} & { }_{6} \mathrm{C}_{4} \times{ }_{4} \mathrm{C}_{1}(=60) \\ & { }_{6} \mathrm{C}_{5} \times{ }_{4} \mathrm{C}_{0}(=6) \\ & \text { Answer }=186 \end{aligned}$	M1 M1 A1		For reasonable attempt on option 4M 1 W , or $5 \mathrm{M}, 0 \mathrm{~W}$, can have + here and perms For other option attempt For correct answer
	(iii)	Man and woman both on ${ }_{5} \mathrm{C}_{2} \times{ }_{3} \mathrm{C}_{1}$ (= 30) $120-30=90$	M1 M1 A1	3	For finding number of ways of the man and woman being on together, need not be evaluated but must be multiplied For subtracting a relevant number from their (i) For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 0390$	6

		$\begin{aligned} & O R{ }_{5} \mathrm{C}_{2} \times{ }_{3} \mathrm{C}_{2}(=30) \\ &{ }_{3} \mathrm{C}_{1} \times{ }_{5} \mathrm{C}_{3}(=30) \\ &\left.{ }_{5} \mathrm{C}_{3} \times{ }_{3} \mathrm{C}_{2}=30\right) \\ & \sum=90 \\ & \text { OR }{ }_{3} \mathrm{C}_{1} \times{ }_{5} \mathrm{C}_{3}(=30) \\ &{ }_{3} \mathrm{C}_{2} \times{ }_{6} \mathrm{C}_{3}(=60) \\ & \sum=90 \\ & \\ & \text { OR }{ }_{5} \mathrm{C}_{2} \times{ }_{3} \mathrm{C}_{2}(=30) \\ &{ }_{5} \mathrm{C}_{3} \times{ }_{4} \mathrm{C}_{2}(=60) \\ & \sum=90 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3 3 3	Any 2 of man in, woman out Woman in, man out Neither in Woman in, man out Woman out, any man For correct answer Man in, woman out Man out, any woman For correct answer
6	(i)	$P(G)=$ number of g'parents/total people $=6 / 16=3 / 8$	M1 A1	2	For appreciating total g'parents/total people, can be implied For correct answer
	(ii)	$\begin{aligned} & \mathrm{P}(\mathrm{H} 1, \mathrm{G})+\mathrm{P}(\mathrm{H} 2, \mathrm{G})+\mathrm{P}(\mathrm{H} 3, \mathrm{G}) \\ & =\frac{1}{3} \times \frac{2}{7}+\frac{1}{3} \times \frac{3}{7}+\frac{1}{3} \times \frac{1}{2}=\frac{17}{42} \\ & (=0.405) \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \text { M1 } \\ \text { A1 } \end{gathered}$	3	For any correct 2-factor product, need not be evaluated For addition of 3 relevant 2-factor products For correct answer or equivalent
	(iii)	$\begin{aligned} & \mathrm{P}(\mathrm{H} 1 \mid \mathrm{G})+\mathrm{P}(\mathrm{H} 2 \mid \mathrm{G}) \\ & =\frac{2 / 21}{17 / 42}+\frac{3 / 21}{17 / 42}=\frac{10}{17} \end{aligned}$ $\begin{array}{\|l} \text { OR } \mathrm{P}(\mathrm{H} 3 \mid \mathrm{G})=7 / 17 \\ \text { Answer }=1-7 / 17 \\ =10 / 17 \end{array}$	M1 M1 A1 A1 M1 M1 A2	4	For summing exactly 2 probability options For dividing by answer to (ii), only if not multiplied as well, and p must be < 1 For one correct probability For correct answer or equivalent For finding prob. options no parents For subt. from 1 For correct answer
7	(i)	$\begin{aligned} & \text { Mean }= \\ & (2.5 \times 11+7.5 \times 20+ \\ & 15 \times 32+25 \times 18+35 \times 10+ \\ & 55 \times 6) / 97=18.4 \end{aligned}$	M1 M1 A1		For using their mid-intervals (not end points or class widths) For using $\frac{\sum f x^{2}}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg 3/3

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 0390$	6

\begin{tabular}{|c|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \text { sd }= \\
& \sqrt{ }\left(2.5^{2} \times 11+7.5^{2} \times 20+\right. \\
& 15^{2} \times 32+25^{2} \times 18+ \\
& \left.35^{2} \times 10+55^{2} \times 6\right) / 97- \\
& \text { mean } \left.^{2}\right)=13.3
\end{aligned}
$$ \& M1

A1 \& 5 \& | For using $\frac{\sum f x^{2}}{\sum f}-(\text { their mean })^{2}$ or equivalent, no $\sqrt{ }$ needed, not $\left(\sum f x\right)^{2} / \sum f$ |
| :--- |
| For correct answer |

\hline (ii) \& Freq. densities: 2.2, 4.0, 3.2, 1.8, 1.0, 0.2 \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 | \& 4 \& | For attempting a frequency density of some sort (or scaled frequency), can be upside down but not multiplied |
| :--- |
| For correct heights on the graph |
| For correct bars on uniform horiz. scale, i.e. from 0 to 5 etc. |
| Freq. density or scaled freq. labelled on vertical axis, time or mins on horiz., 'class width' is not enough |

\hline
\end{tabular}

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07
 MATHEMATICS AND HIGHER MATHEMATICS
 Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	7

1 (i) 2.51 .25 (ii) 5	$B 1$ $B 1$ 2 $B 1 f t$ $B 1 f t$ 2	For correct mean. For correct variance For correct mean. For correct variance
$2 \mathrm{H}_{0}: p=0.6 \quad \mathrm{H}_{1}: p>0.6$ $\begin{aligned} & \mathrm{P}(X \geq 10)={ }_{12} \mathrm{C}_{10} 0.6^{10} 0.4^{2}+ \\ & { }_{12} \mathrm{C}_{11} 0.6^{11} 0.4^{1}+0.6^{12} \\ & =0.0834 \end{aligned}$		For correct H_{0} and H_{1} For one Bin term ($\mathrm{n}=12, \mathrm{p}=0.6$) For attempt $X=10,11,12$ or equiv. For correct answer (or correct individual terms and dig showing 0.1)
Reject H_{0}, i.e. accept claim at 10% level S.R. Use of Normal scores $4 / 5$ max $z=\frac{9.5-7.2}{\sqrt{2.88}}$ (or equiv. Using $\mathrm{N}(0.6,0.24 / 12)$) $=1.3552$ $\operatorname{Pr}(>9.5)=1-0.9123=0.0877$ Reject H_{0}, i.e. accept claim at 10% level	B1ft B1 M1 A1 B1ft	For correct conclusion For correct H_{0} and H_{1} Use of $\mathrm{N}(7.2,2.88$) or $\mathrm{N}(0.6,0.24 / 12)$ and standardising with or without cc For correct answer or 1.3552 and 1.282 seen For correct conclusion
3 (i) $\begin{aligned} & 31 \pm 2.326 \times \frac{3}{\sqrt{20}} \\ & =(29.4,32.6) \end{aligned}$ (ii) 30% is inside interval Accept claim (at 2\% level)	B1 M1 B1 A1 ftB1* ftB1*dep	For correct mean Calculation of correct form $\bar{x} \pm z \times \frac{s}{\sqrt{n}}$ (must have \sqrt{n} in denominator) $z=2.326$ Correct answer S.R. Solutions not using (i) score B1ft only for correct working and conclusion
4 (i) $\begin{aligned} & \mathrm{P}(X>1.5)=\left[x-\frac{x^{2}}{4}\right]_{1.5}^{2} \\ & \text { or } 1-\left[x-\frac{x^{2}}{4}\right]_{.0}^{1.5} \\ & =0.0625 \end{aligned}$	M1 A1 2	For substituting 2 and 1.5 in their $\int f(x) d x$ (or area method $1 / 2$ their base x their height) For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	7

(ii) $\begin{aligned} & \mathrm{E}(X)= \\ & \int_{0}^{2}\left(x-\frac{1}{2} x^{2}\right) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{6}\right]_{0}^{2} \\ & =2 / 3 \end{aligned}$ (iii) $m-\frac{m^{2}}{4}=0.5$ $m=0.586(2-\sqrt{2})$	M1 A1 2 M1 M1 A1 3	For evaluating their $\int x f(x) d x$ For correct answer For equating their $\int f(x) d x$ to 0.5 For solving the related quadratic For correct answer
$\begin{aligned} 5 \text { (i) } & \mathrm{P}(X<1.7)=\Phi\left(\frac{1.7-2.1}{0.9 / \sqrt{20}}\right) \\ & =1-\Phi(1.9876) \\ & =0.0234 \\ \text { (ii) } & \mathrm{P}(\text { Type II error })=\mathrm{P}(X>1.7) \\ & =1-\Phi\left(\frac{1.7-1.5}{0.9 / \sqrt{20}}\right) \\ & =1-\Phi(0.9938)=0.160 \end{aligned}$	B1 M1 A1 A1 4 B1 M1 A1 A1 4	For identifying prob Type I error For standardising For correct standardising and correct area For correct final answer For identifying prob for Type II error For standardising using 1.5 and their 1.7 For correct standardising and correct area For correct final answer
6 (i) $\begin{aligned} & \lambda=1.25 \\ & \mathrm{P}(X<4)= \\ & e^{-1.25}\left(1+1.25+\frac{1.25^{2}}{2}+\frac{1.25^{3}}{6}\right) \\ & =0.962 \end{aligned}$ (ii) $\begin{aligned} & X \sim \mathrm{~N}(182.5,182.5) \\ & \mathrm{P}(>200 \text { breakdowns })= \\ & 1-\Phi\left(\frac{200.5-182.5}{\sqrt{182.5}}\right) \\ & =1-\Phi(1.332) \\ & =0.0915(0.0914) \end{aligned}$ (iii) $\begin{aligned} & \lambda=5 \text { for phone calls } \\ & \lambda=6.25 \text { for total } \\ & P(X=4)=e^{-6.25}\left(\frac{6.25^{4}}{4!}\right) \\ & =0.123 \end{aligned}$	M1 M1 A1 3 B1 M1 A1ft A1 4 B1 M1 A1 3	For attempting to find new λ and using it For summing $\mathrm{P}((0) 1,2,3$,$) or$ $\mathrm{P}(0,1,2,3,4)$ using a Poisson expression For correct answer For correct mean and variance For standardising process with or without continuity correction For correct standardising and correct tail For correct answer For summing their two $\lambda \mathrm{s}$ and using a Poisson expression OR alt. method using sep. distributions 5 terms req. For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	7

[^0]: 1 (i) Use trig formulae to express LHS in terms of $\sin x$ and $\cos x$
 Use $\cos 60^{\circ}=\sin 30^{\circ}$ to reduce equation to given form $\cos x=k$
 (ii)

 State or imply that $k=-\frac{1}{\sqrt{3}}$ (accept -0.577 or -0.58)
 Obtain answer $x=125.3^{\circ}$ only
 [Answer must be in degrees; ignore answers outside the given range.]
 [SR: if $k=\frac{1}{\sqrt{3}}$ is followed by $x=54.7^{\circ}$, give A0A1 $\sqrt{ }$.]

